大语言模型技术赋能智慧社区治理的发展优势与实践路径  

Development Advantages and Practical Paths of Large Language Model Technology Empowering Smart Community Governance

在线阅读下载全文

作  者:盛志辉 SHENG Zhihui(School of Finance and Economics,Xizang Minzu University,Xianyang 712082,China)

机构地区:[1]西藏民族大学财经学院,陕西咸阳712082

出  处:《商业观察》2024年第36期86-90,120,共6页BUSINESS OBSERVATION

基  金:西藏民族大学2024年研究生科研创新与实践项目(Y2024082)。

摘  要:随着数字经济时代的到来,智慧社区治理作为城市发展的关键环节受到了前所未有的重视。研究首先分析了大语言模型技术嵌入智慧社区治理的优势与应用场景,随后,分析了当前大语言模型技术赋能智慧社区治理的困境。最后,提出了大语言模型技术助推城市智慧社区治理的实践路径。研究结果表明,LLMs通过其处理数据、人机交互和服务自动化的能力,显著提高了社区决策质量、提高了社区居民参与度、增强了社区治理透明度,改变了社区治理模式。未来智慧社区的发展既需要技术创新,也需要更加人性化的治理模式和制度保障,以确保社区治理不仅在技术上先进,更在服务质量和居民满意度上取得进步。With the advent of the digital economy era,smart community governance,as a key link in urban development,has received unprecedented attention.This study first analyzes the advantages and application scenarios of large language model technology embedded in smart community governance,and then analyzes the current dilemma of large language model technology empowering smart community governance.Finally,the practical path of large language model technology to promote the governance of urban smart community is proposed.The results show that LLMs can significantly improve the quality of community decision-making,improve the participation of community residents,enhance the transparency of community governance,and change the community governance model through their abilities to process data,human-computer interaction,and service automation.In the future,the development of smart communities requires technological innovation,more humanized governance models and institutional guarantees to ensure that community governance is not only technologically advanced,but also makes progress in service quality and resident satisfaction.

关 键 词:智慧社区 大语言模型(LLMs) 社区治理模式 智慧社区治理 社区治理透明度 

分 类 号:F49[经济管理—产业经济] D669.3[政治法律—政治学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象