麦肯锡7S模式在静配中心降低新生儿肠外营养液调配差错的效果应用  

Application of McKinsey 7S model to reduce the allocation error of neonatal TPN in the static distribution center

在线阅读下载全文

作  者:李爽 黄晓英[1] LI Shuang;HUANG Xiaoying(Department of Pharmacy,Ministry of Education Key Laboratory of Child Development and Disorders/National Clinical Research Center for Child Health and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Pediatrics,Children′s Hospital of Chongqing Medical University,Chongqing 400014,China)

机构地区:[1]重庆医科大学附属儿童医院药学部/儿童发育疾病研究教育部重点实验室/国家儿童健康与疾病临床医学研究中心/儿童发育重大疾病国家国际科技合作基地/儿科学重庆市重点实验室,重庆400014

出  处:《现代医药卫生》2025年第1期53-56,61,共5页Journal of Modern Medicine & Health

摘  要:目的分析麦肯锡7S模式在降低该院静脉药物调配中心(PIVAS)新生儿全胃肠外营养(TPN)调配差错方面的效果。方法收集2023年1-12月新生儿TPN配置差错数据,按照麦肯锡7S模式流程优化前后将其分为对照组和试验组,比较2组新生儿TPN调配差错的情况。结果流程优化后,试验组的差错率从2.206‰(66/29921)降至0.646‰(18/27861),低于对照组,差异有统计学意义(P<0.05)。结论麦肯锡7S模式能够降低PIVAS新生儿TPN的调配差错,完善并优化配置流程,提高患儿用药质量。Objective To analyze of the effect of McKinsey 7S model in reducing the errors of neonatal total parenteral nutrition(TPN)allocation in intravenous drug dispensing center(PIVAS).Methods The data of neonatal TPN allocation errors from January to December,2023 were collected,and they were divided into the control group and the experimental group before and after the optimization of McKinsey 7S model,and the situation of neonatal TPN allocation errors between the two groups was compared.Results After the process optimization according to McKinsey 7S model,the error rate of the experimental group decreased from 2.206‰(66/29921)to 0.646‰(18/27861),which was lower than that of the control group,and the difference was statistically significant(P<0.05).Conclusion McKinsey 7S model can reduce the allocation errors of neonatal TPN in PIVAS,improve and optimize the allocation process,and improve the quality of medication for children.

关 键 词:麦肯锡7S模式 静脉药物调配中心 新生儿 全胃肠外营养 调配差错 

分 类 号:R985[医药卫生—药品]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象