Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states  

在线阅读下载全文

作  者:Jian-Dong Zhang Chuang Li Lili Hou Shuai Wang 张建东;李闯;侯丽丽;王帅(School of Mathematics and Physics,Jiangsu University of Technology,Changzhou 213001,China;Research Center for Novel Computing Sensing and Intelligent Processing,Zhejiang Laboratory,Hangzhou 311121,China)

机构地区:[1]School of Mathematics and Physics,Jiangsu University of Technology,Changzhou 213001,China [2]Research Center for Novel Computing Sensing and Intelligent Processing,Zhejiang Laboratory,Hangzhou 311121,China

出  处:《Chinese Physics B》2025年第1期228-233,共6页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant No.12104193);the Program of Zhongwu Young Innovative Talents of Jiangsu University of Technology(Grant No.20230013)。

摘  要:Quantum phase estimation based on Gaussian states plays a crucial role in many application fields.In this paper,we study the precision bound for the scheme using two-mode squeezed Gaussian states.The quantum Fisher information is calculated and its maximization is used to determine the optimal parameters.We find that two single-mode squeezed vacuum states are the optimal Gaussian inputs for a fixed two-mode squeezing process.The corresponding precision bound is sub-Heisenberg-limited and scales as N^(-1)/2.For practical purposes,we consider the effects originating from photon loss.The precision bound can still outperform the shot-noise limit when the lossy rate is below 0.4.Our work may demonstrate a significant and promising step towards practical quantum metrology.

关 键 词:quantum metrology Gaussian state Heisenberg limit 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象