刑事大数据证据的基本定位  

Foundational position of criminal big data evidence

在线阅读下载全文

作  者:曹盛楠 Cao Shengnan(Southwest University of Political Science and Law,Chongqing 401120.)

机构地区:[1]西南政法大学诉讼法与司法改革研究中心,重庆401120

出  处:《证据科学》2024年第6期675-688,共14页Evidence Science

基  金:重庆市教育委员会人文社会科学研究基地项目“落实证人出庭作证制度研究”(23SKJD008)阶段性研究成果。

摘  要:学界关于刑事大数据证据的研究在概念内涵和法律地位等基本定位问题上存在较多争议,挤压了理论研究发展的空间,有必要加以厘清。从证据的生成机理出发,刑事大数据证据主要是指刑事诉讼中运用机器学习算法对案件相关海量数据进行计算后所得出的分析结果。“大数据证据”“人工智能证据”“算法证据”三个概念在狭义上基本指向同一研究对象,且三者之间并不存在表达上的优劣之分。在法律地位上,当前宜在实践和理论两个层面分别将刑事大数据证据作为专门性问题报告和特殊的科学证据。未来应在法定证据种类制度改良的框架下,随着证据实质审查规则的完善,逐步确立刑事大数据证据的独立证据种类地位。In the academic community,the research on criminal big data has encountered numerous controversies regarding the foundational position of criminal big data evidence,such as the conceptual connotation,and the legal status.These controversies have compacted the space for the development of theoretical research and thus need to be clarified.Based on the evidence generation mechanism,criminal big data evidence mainly refers to the analytical results produced by the machine learning algorithms,which is applied,in the criminal proceedings,to calculate a vast amount of case-related data.Narrowly speaking,the terms of"big data evidence,""artificial intelligence evidence,"and"algorithmic evidence"essentially refer to the same research object,and there is no difference in the three expressions.In terms of legal status,currently,it is better to treat criminal big data evidence,respectively in two levels,as reports on specialized issues in practice,and as special scientific evidence in theory.In the future,as the rules for substantive examination of evidence are refined,the independent status of criminal big data evidence should be gradually recognized within the improvement of the statutory evidence type system.

关 键 词:大数据证据 人工智能证据 科学证据 专门性问题报告 法定证据种类 

分 类 号:D918.9[政治法律—法学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象