检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱烨君 娄本杰 邓先攀 孟康培 陈晓平[1] ZHU Yejun;LOU Benjie;DENG Xianpan;MENG Kangpei;CHEN Xiaoping(Department of Mechanical Engineering,Ningbo University of Technology,Ningbo 315016,Zhejiang,China;School of Energy and Electrical Engineering,Chang’an University,Xi’an 710064,Shaanxi,China;Viridi E-Mobility Technology(Ningbo)Co.,Ltd.,Ningbo 315336,Zhejiang,China;Zhejiang Key Laboratory of Intelligent Vehicle Domain Safety,Geely Automobile Research Institute(Ningbo)Co.,Ltd.,Ningbo 315336,Zhejiang,China)
机构地区:[1]宁波工程学院机械与汽车工程学院,浙江宁波315016 [2]长安大学能源与电气工程学院,陕西西安710064 [3]威睿电动汽车技术(宁波)有限公司,浙江宁波315336 [4]吉利汽车研究院(宁波)有限公司浙江省全省智能汽车全域安全重点实验室,浙江宁波315336
出 处:《爆炸与冲击》2025年第2期74-84,共11页Explosion and Shock Waves
基 金:国家自然科学基金(12402457);浙江省汽车安全技术研究重点实验室开放基金(GL/20-002X);宁波市自然科学基金(2023J389)。
摘 要:为厘清放电状态对锂离子电池动态力学响应和失效模式的影响规律,系统地开展了锂离子电池在不同放电状态下的准静态压缩特性及其安全性的实验分析。通过预设电池至特定的放电电量,并在放电过程中、放电后静置1和24 h的时间节点上实施压缩测试,深入探究了电池的力-位移响应特性、最大承载力及安全性表现。实验结果显示,相较于其他状态,放电状态下的电池展现出较低的力-位移曲线,表明其刚度在静置之后相比于放电过程中有所提升。此外,放电状态下的电池展现出显著高于静置后状态的最大承载力,且在放电过程中进行压缩测试更容易使电池发生爆炸,而静置后的电池则表现出显著提升的安全性。借助扫描电子显微镜分析,进一步确认了放电状态下电池内部电极颗粒的破损程度更剧烈,观测到的现象被归因于放电过程中产生的扩散诱导应力,该应力在电池内部累积,加剧了电池在机械压缩下的损伤风险。To clarify the influence of the discharge state on the dynamic mechanical response and failure mode of lithium-ion batteries,an experimental analysis of the quasi-static compression characteristics and safety performance of lithium-ion batteries under different discharge states was systematically conducted.By presetting the battery to a specific discharge capacity and conducting compression tests at the time nodes of 1 and 24 h after standing during and after the discharge process,the force-displacement response characteristics,maximum load-bearing capacity and safety performance of the battery were thoroughly explored under varying electrochemical states.The experimental results show that,compared with other states,the battery in the discharge state exhibits a lower force-displacement curve,indicating that its stiffness increases after standing compared with that during the discharge process and this decrease is attributed to the electro-chemical reaction inside the battery during the discharge process.In addition,the battery in the discharge state shows a significantly higher maximum loadbearing capacity than that in the standing state after discharge,and the compression test during the discharge process is more likely to cause the battery to explode,while the battery after standing shows a significantly improved safety.The analysis using scanning electron microscope(SEM)further indicates that the damage degree of the internal electrode particles of the battery in the discharge state is more severe.The observed damage and increased risk of mechanical failure are primarily attributed to the diffusion-induced stress generated during the discharge process,which accumulate and intensify the vulnerability of the battery structure under mechanical compression.This study contributes valuable experimental evidence and theoretical insights that are crucial for advancing the understanding of the mechanical integrity and safety of lithium-ion batteries under operational stresses.The findings underscore the importance of c
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3