基于磁记忆检测方法的便携式钻杆检测设备  

Portable Drill Pipe Detection Device Based on Magnetic Memory Detection Method

在线阅读下载全文

作  者:蒋浩 张来斌[1,2] 樊建春 Jiang Hao;Zhang Laibin;Fan Jianchun(College of Safety and Ocean Engineering,China University of Petroleum(Beijing);Key Laboratory of Oil and Gas Production Safety and Emergency Technology)

机构地区:[1]中国石油大学(北京)安全与海洋工程学院 [2]油气生产安全与应急技术重点实验室

出  处:《石油机械》2025年第1期119-124,共6页China Petroleum Machinery

基  金:中国石油天然气股份有限公司塔里木油田分公司项目“万米深井井控设备、钻具安全可靠性评价与风险控制技术”(TB20231031)。

摘  要:当钻杆在井下出现穿刺渗漏、断裂等失效问题时,会因钻杆破裂而停止工作,对钻井施工造成严重损失,严重者可能会发生重大事故。为实现快速高效的钻杆表面缺陷检测,简单介绍了磁记忆检测方法检测金属缺陷的机理,在此基础上,介绍了一种搭载磁记忆探头的便携式钻杆表面损伤检测装置。该装置可以高速、稳定地采集多种尺寸的钻杆表面磁记忆信号,并结合钻杆损伤磁记忆检测软件进行分析,实现对钻杆表面缺陷的可视化分析。通过开展相关试验,对钻杆带伤表面进行检测及数据分析,结果表明,该检测系统能够准确可靠地检测出钻杆表面各种缺陷,验证了磁记忆检测方法的可行性。所得结果可为钻杆表面缺陷检测提供一种有效的检测方法。When the drill pipe experiences failure problems such as puncture leakage and breakup in the well,it stops working due to the rupture,causing serious losses to drilling construction,and even resulting in serious accidents.To achieve fast and efficient detection of surface defects on drill pipes,the mechanism of magnetic memory detection method for detecting metal defects was briefly introduced.On the basis of which,a portable drill pipe surface damage detection device equipped with magnetic memory probe was introduced.This device can collect magnetic memory signals of various sizes of drill pipe surfaces stably at high speed,and combine with magnetic memory detection software of drill pipe damage for analysis,achieving visual analysis of drill pipe surface defects.Moreover,relevant tests were carried out to conduct detection and data analysis on the damage surface of drill pipes,showing that the detection system can accurately and reliably detect various defects on the surface of the drill pipe,verifying the feasibility of the magnetic memory detection method.The research results provide an effective detection method for the detection of surface defects on drill pipes.

关 键 词:钻柱 无损检测 磁记忆检测 检测装置 梯度信号 分析软件 

分 类 号:TE921[石油与天然气工程—石油机械设备]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象