基于异构图卷积网络的隐式信任和影响力在社交推荐中的应用  

Application of Implicit Trust and Influence in Social Recommendation Based on Heterogeneous Graph Convolutional Networks

作  者:王希源 僧德文[1] WANG Xiyuan;SENG Dewen(School of Computer Science,Hangzhou Dianzi University,Hangzhou 310018,China)

机构地区:[1]杭州电子科技大学计算机学院,浙江杭州310018

出  处:《软件工程》2025年第2期21-26,共6页Software Engineering

基  金:教育部产学合作协同育人项目(220903242265640)。

摘  要:针对如何在图卷积网络中融入用户的社交网络以及有效实现异构关系学习的问题,提出了一种包含隐式信任和影响的新颖的异构图卷积网络框架(HGCNTI)。该框架基于用户-用户二分图构建信任子图和影响子图,充分利用用户间的隐式关系达到增强用户-项目表示的目的;此外,设计了一个多视角元网络,从不同用户或项目中提取个性化信息,实现个性化知识转换的自适应增强。实验结果表明,在Ciao和Epinions两个数据集上,HGCNTI均表现出色。与各种最新基线相比,在Ciao数据集上,其召回率@5提升了22.6%,召回率@10提升了19.7%,NDCG@10提升了19%;在Epinions数据集上,NDCG@5提升了2.9%,精确率@10提升了4.5%。To address the issue of how to incorporate users'social networks into Graph Convolutional Networks(GCAN)and effectively realize heterogeneous relationship learning,this paper proposes a novel heterogeneous GCN framework that incorporates implicit trust and influence(HGCNTI).This framework constructs trust and influence subgraphs based on a user-user bipartite graph,fully leveraging the implicit relationships between users to enhance user-item representation.Additionally,a multi-view meta-network is designed to extract personalized information from different users or items,achieving adaptive enhancement of personalized knowledge transfer.Experimental results show that HGCNTI performs exceptionally well on the Ciao and Epinions datasets.Compared to various state-of-the-art baselines,it improves the recall@5 by 22.6%,recall@10 by 19.7%,and NDCG@10 by 19%on the Ciao dataset;on the Epinions dataset,it improves NDCG@5 by 2.9%and precision@10 by 4.5%.

关 键 词:社会信任 社交推荐 异构图学习 元网络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象