An RFCSO-based grid stability enhancement by integrating solar photovoltaic systems with multilevel unified power flow controllers  

在线阅读下载全文

作  者:Swetha Monica Indukuri Alok Kumar Singh D.Vijaya Kumar 

机构地区:[1]Department of Electrical Engineering,Nirwan University,Jaipur,Rajasthan,303305,India [2]Aditya Institute of Technology and Management,Tekkali,Srikakulam,Andhra Pradesh,532201,India

出  处:《Energy Storage and Saving》2024年第4期341-351,共11页储能与节能(英文)

摘  要:Multilevel unified power flow controllers(ML-UPFCs)aim to improve grid stability,power quality,and fault management.This approach is particularly beneficial for renewable energy systems connected to a grid,where efficient power flow and robust fault handling are crucial for maintaining system reliability.However,current grid-integrated systems face challenges such as inefficient fault management,harmonic distortions,and instability when dealing with nonlinear loads.Existing control strategies often lack the flexibility and optimization required to handle these issues effectively in dynamic grid environments.Therefore,the proposed methodology involves a multistep control strategy to optimize the integration of solar photovoltaic(SPV)systems with MLUPFCs.Initially,the SPV array generates direct current(DC)power,which is optimized using a perturb and observe maximum power point tracking controller.The DC-to-DC boost converter then steps up the voltage for input to a voltage source inverter(VSI)or voltage source converter(VSC).The VSI/VSC,enhanced by greedy control-based monarch butterfly optimization,converts DC to AC while minimizing harmonic distortion.The power is then fed into the grid,which supplies sensitive critical and nonlinear loads.Three-phase fault detection mechanisms and series transformers manage the power flow and fault conditions.Furthermore,the ML-UPFC,controlled by a random forest cuckoo search optimization algorithm,enhances the fault ride-through capabilities and power regulation.Additional transformers and a shunt transformer optimize the voltage levels and reactive power management,ensuring stable and high-quality power delivery to both sensitive and nonlinear loads.Finally,the proposed approach addresses power flow optimization,fault mitigation,and nonlinear load management with the aim of enhancing grid stability and efficiency.

关 键 词:Solar photovoltaic systems Multi-level unified power flow controller Random forest optimization Cuckoo search optimization Advanced control strategies Grid stability Power quality 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象