机构地区:[1]State Key Laboratory of Chemical Engineering(Tianjin University),Tianjin Key Laboratory of Applied Catalysis Science and Technology,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China [2]Collaborative Innovation Center of Chemical Science and Engineering(Tianjin),Tianjin 300072,China [3]Department of Chemical and Metallurgical Engineering,School of Chemical Engineering,Aalto University,Kemistintie 1,Espoo,P.O.Box 16100 Aalto FI-00076,Finland [4]Hebei Technical Innovation Center for Fuel Hydrogen Production from Industrial By-product Gas,Tangshan 064099,Hebei,China
出 处:《Chinese Journal of Catalysis》2024年第12期124-134,共11页催化学报(英文)
基 金:国家重点研发项目(2022YFB4101800);国家自然科学基金(22075205).
摘 要:Designing highly efficient photocatalyst for the valorization of CO_(2) is an ideal strategy to reduce greenhouse gas emissions and utilize solar energy.In this study,a S-scheme heterojunction photocatalyst is fabricated by solvothermal impregnation of ZnO on W_(18)O_(49) for photocatalytic CO_(2) N-formylation of aniline.The localized surface plasmon resonance effect of W_(18)O_(49) improves the absorption capacity for long-wave light significantly,and the hot electrons generated in W_(18)O_(49) with a high energy can migrate to the conduction band of ZnO and thus enhance the photocatalytic reduction ability.Meanwhile,the S-scheme heterojunction facilitates the separation of photoinduced charge carriers and preserves the redox ability of W_(18)O_(49)/ZnO composite photocatalyst.The conversion of aniline reaches 99.1%after 5 h reaction under visible light irradiation at room temperature with an N-formylaniline selectivity of 100%.A possible photocatalytic reaction mechanism is proposed.This study paves a promising way for the design of highly efficient photocatalyst and the sustainable utilization of CO_(2).大量化石燃料快速消耗排放过量CO_(2),导致了包括温室效应和全球性气候变化在内的一系列严重后果,对环境构成了巨大威胁.利用CO_(2)作为原料生产高附加值化学品被广泛认为是一种能减少CO_(2)排放并实现可持续发展的有效方案.在众多高效的CO_(2)转化途径中,CO_(2)参与的胺类N-甲酰化反应因为酰胺类产品在药物合成及工业溶剂等领域的大量应用而被密切关注.与传统需要苛刻反应条件的热催化手段相比,光催化CO_(2)参与的胺类N-甲酰化反应为CO_(2)转化为具有高附加值的酰胺类产品提供了一种更节能环保的方法.ZnO因具有合适的能带结构和适度的CO_(2)吸附能力,在光催化CO_(2)转化领域备受关注.然而,单一ZnO光吸收范围窄及光生载流子复合快等问题限制了其进一步应用.本文通过两步溶剂热法合成了W_(18)O_(49)/ZnO S型异质结光催化剂.电感耦合等离子体发射光谱、X射线粉末衍射谱、扫描电镜以及透射电镜等结果证实了W_(18)O_(49)/ZnO异质结光催化剂的成功制备.此外,紫外-可见漫反射光谱的结果表明,W_(18)O_(49)独特的局域表面等离子体共振(LSPR)效应提高了催化剂整体的光响应能力.结合莫特-肖特基曲线,确定了各材料的能带结构.同时,利用光电化学测试以及稳态荧光光谱等表征方法,研究了各材料的光生载流子分离和传递情况,结果表明W_(18)O_(49)/ZnO复合材料表现出明显优于单一材料的载流子分离和传递能力.借助原位光照X射线光电子能谱和密度泛函理论计算,验证了W_(18)O_(49)/ZnO异质结体系的光生电荷转移路径符合S型机制,解释了复合材料载流子分离和传递能力提升的原因.在可见光照射下,W_(18)O_(49)/ZnO催化反应5 h后,底物苯胺转化率达到99.1%,产物甲酰苯胺的选择性达100%.同时,循环活性测试证明W_(18)O_(49)/ZnO复合材料具有良好的光催化稳定性.此外,W_(18)O_(49)/ZnO异质�
关 键 词:Photocatalysis CO_(2)valorization N-FORMYLATION Step-scheme heterojunction Tungsten oxide ZNO
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...