Study of A Hybrid Deep Learning Method for Forecasting the Short-Term Motion Responses of A Semi-Submersible  被引量:1

在线阅读下载全文

作  者:XU Sheng JI Chun-yan 

机构地区:[1]School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China

出  处:《China Ocean Engineering》2024年第6期917-931,共15页中国海洋工程(英文版)

基  金:the National Natural Science Foundation of China (Grant No. 52301322);the Jiangsu Provincial Natural Science Foundation (Grant No. BK20220653);the National Science Fund for Distinguished Young Scholars (Grant No. 52025112);the Key Projects of the National Natural Science Foundation of China (Grant No. 52331011)

摘  要:Accurately predicting motion responses is a crucial component of the design process for floating offshore structures.This study introduces a hybrid model that integrates a convolutional neural network(CNN),a bidirectional long short-term memory(BiLSTM)neural network,and an attention mechanism for forecasting the short-term motion responses of a semisubmersible.First,the motions are processed through the CNN for feature extraction.The extracted features are subsequently utilized by the BiLSTM network to forecast future motions.To enhance the predictive capability of the neural networks,an attention mechanism is integrated.In addition to the hybrid model,the BiLSTM is independently employed to forecast the motion responses of the semi-submersible,serving as benchmark results for comparison.Furthermore,both the 1D and 2D convolutions are conducted to check the influence of the convolutional dimensionality on the predicted results.The results demonstrate that the hybrid 1D CNN-BiLSTM network with an attention mechanism outperforms all other models in accurately predicting motion responses.

关 键 词:short-term motion responses convolutional neural network bidirectional long short-term memory neural network attention mechanism hybrid model multi-step prediction SEMI-SUBMERSIBLE 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象