检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学通信与信息工程学院,上海200444
出 处:《工业控制计算机》2025年第1期63-65,共3页Industrial Control Computer
摘 要:在对下一代通信网络架构的广泛研究中,对于有多密集基站(Base Station,BS)的移动边缘计算(Mobile Edge Computing,MEC)系统来说,任务卸载和资源分配问题变得越来越复杂,首先将这一多维动态问题表述为一个优化问题。其次,为了使系统开销最小化,提出了一种基于注意力机制的多代理近端策略优化(Attention-based Multi-agent Proximal Policy Optimization,A-MAPPO)算法,该算法采用集中式训练和分布式执行(Centralized Training and Decentralized Execution,CTDE)框架,并利用注意力机制来促进Critic网络的收敛,从而提高算法的性能。最后,实验结果表明,与其他基准算法相比,A-MAPPO算法可以最多降低28.3%的系统成本。In an extensive study of next-generation communication network architectures,the problem of task offloading and resource allocation has become increasingly complex for mobile edge computing(MEC) systems with many dense base stations(BSs),and we first formulate this multidimensional dynamic problem as an optimization problem.In order to minimize the system cost,this paper proposes an attention-based multi-agent proximal policy optimization(A-MAPPO) algorithm,which employs centralized training and decentralized execution(CTDE),and exploits the attention mechanism to facilitate the convergence of the critic networks,thus improving the performance of the algorithm.Simulation experiments show that the A-MAPPO algorithm can reduce the system cost by 28.3% compared to other baseline algorithms.
关 键 词:移动边缘计算 多代理深度学习 资源分配 任务卸载
分 类 号:TN929.5[电子电信—通信与信息系统] TP18[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222