检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王庆昕 张先杰 张海峰[2] 钟凯 陈宏田 韩敏[4] WANG Qing-xin;ZHANG Xian-jie;ZHANG Hai-feng;ZHONG Kai;CHEN Hong-tian;HAN Min(Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education,Institutes of Physical Science and Information Technology,Anhui University,Hefei Anhui 230601,China;School of Mathematics Science,Anhui University,Hefei Anhui 230601,China;Department of Chemical and Materials Engineering,University of Alberta,Edmonton AB T6G 2V4,Canada;Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education,Dalian University of Technology,Dalian Liaoning 116024,China)
机构地区:[1]安徽大学计算智能与信号处理教育部重点实验室,物质科学与信息技术研究院,安徽合肥230601 [2]安徽大学数学科学学院,安徽合肥230601 [3]阿尔伯塔大学化学与材料工程系,加拿大埃德蒙顿AB T6G 2V4 [4]大连理工大学工业装备智能控制与优化教育部重点实验室,辽宁大连116024
出 处:《控制理论与应用》2025年第1期149-157,共9页Control Theory & Applications
基 金:国家自然科学基金项目(61973001);安徽省自然科学基金项目(2208085QF205);安徽省高等学校自然科学基金项目(2022AH050097)资助.
摘 要:近年来,图神经网络被广泛应用于处理具有非欧结构的工业过程数据.然而由于设备运行的过程数据常常受到噪声和冗余信息的干扰,如果直接使用原始信号会导致构建的图模型不够精细和准确,从而影响后续的模型诊断性能.针对这一问题,本文提出了一种时–空特征驱动的多轮次重构图卷积网络(STMR-GCN)故障诊断方法.该方法首先利用多尺度卷积神经网络与GCN对故障信号进行特征提取.然后根据样本之间的余弦相似性对图结构进行多次重构,重构后的图模型能够更精确地反映样本之间的连边关系,并将得到的图模型输入到GCN进行故障种类的识别.最后,在东南大学(SEU)仿真数据集和真实的磨煤机数据集上进行实验,实验结果表明所提方法与其他对比方法相比诊断精度均有提高,从而证明STMR-GCN模型在故障诊断方面的有效性和实用性.Recently,graph neural networks have been widely used to handle industrial process data with non-Euclidean structures.However,since the process data of equipment operation is often disturbed by noises and redundant information,the direct use of raw signal to construct a graph model will result in a less accurate graph structure,thus affecting the subsequent performance of the model diagnosis.A multi-round reconstructed graph convolutional network(GCN)fault diagnosis method that driven by spatial-temporal features(STMR-GCN)is proposed.The method firstly uses multi-scale convolutional neural network with GCN for feature extraction of fault signals.Then,graph structure will be reconstructed several times according to the cosine similarity between samples,and reconstructed graph model can reflect the connected edge relationship between samples more accurately.The obtained graph model is input to GCN to realize identification of fault types.Finally,experiments are conducted on Southeast University(SEU)simulation dataset and the real coal mill dataset,and experimental results show that the proposed method improves diagnosis accuracy compared with other comparative methods,which indicates the effectiveness and feasibility of STMR-GCN model in fault diagnosis.
分 类 号:TH17[机械工程—机械制造及自动化] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222