检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方晓亮 王翠渺 刘书畅 叶文涛 崔景芹 王超志 陈伟平 张鹏 张力[3] FANG Xiaoliang;WANG Cuimiao;LIU Shuchang;YE Wentao;CUI Jingqin;WANG Chaozhi;CHEN Weiping;ZHANG Peng;ZHANG Li(College of Energy,Xiamen University,Xiamen 361102,China;Tan Kah Kee Innovation Laboratory,Xiamen 361104,China;College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China;Pen-Tung Sah Institute of Micro-Nano Science and Technology,Xiamen University,Xiamen 361005,China;Department of Materials Science and Engineering,City University of Hong Kong,Hong Kong 999077,China)
机构地区:[1]厦门大学能源学院,福建厦门361102 [2]嘉庚创新实验室,福建厦门361104 [3]厦门大学化学化工学院,福建厦门361005 [4]厦门大学萨本栋微米纳米科学技术研究院,福建厦门361005 [5]香港城市大学材料科学与工程系,中国香港999077
出 处:《厦门大学学报(自然科学版)》2025年第1期15-30,共16页Journal of Xiamen University:Natural Science
基 金:国家自然科学基金(92161107,92372101)。
摘 要:[背景]锂化的正极与负极集流体组配构建的无负极锂金属电池,能够大幅减少锂用量,是下一代低成本、高能量密度二次电池体系的重要研究方向.然而,在首圈充电过程中,负极集流体表面原位沉积的锂金属与电解液发生副反应,形成不稳定的固体电解质界面,导致有限活性锂的不可逆损失和电池性能的快速衰减.[进展]降低活性锂的消耗、提高锂金属沉积/剥离的可逆性是无负极锂金属电池的关键挑战.目前,通过高容量正极材料预锂化结合现有电池制造工艺,设计适用于软包电池双盐电解液的体系,以及开发面向全固态电池的Ag-C负极等研究进展,推动了无负极锂金属电池的快速发展.[展望]无负极锂金属电池的性能指标距离商业化应用仍有显著差距.实验室的扣式电池到实用级软包电池的测试流程与参数需要标准化.利用多模态和原位表征技术来厘清锂沉积/剥离过程与界面形成机理,并结合人工智能技术建立工况下的可靠模型和修正训练,将有助于推动无负极锂金属电池内部复杂问题的快速、精准解析.[Background]The lithium metal anode,with almost the highest theoretical capacity(3860 mAh/g)and the lowest redox potential(-3.04 V vs standard hydrogen electrode),presents great potentials for next-generation high-energy-density rechargeable battery systems.However,fabricating lithium metal anode requires a complicated and costly process.More importantly,lithium metal anode is prone to react with the electrolyte due to lithium s high reactivity,forming a non-stable solid electrolyte interface(SEI)film of inhomogeneous composition and structure.Hence,anode-free lithium metal batteries(LMBs)constructed by direct matching lithiated cathode with an anode current collector can significantly reduce lithium usage and simplify anode fabrication.Without lithium foil,anode-free LMBs exhibit lower battery mass and thickness,reduced cost,and improved energy density and battery safety,thereby receiving extensive attention.[Progress]Anode-free LMBs still face significant challenges in terms of reversibility,capacity retention and cycling stability.The working principle of the anode-free design is that,during the initial charging process,lithium metal is deposited in-situ on the surface of the anode current collector and then stripped during the subsequent discharging process.This deposition/stripping process is repeated in later cycles.Unfortunately,the deposition is difficult to control and the deposited lithium film also simultaneously reacts with the electrolyte,leading to irreversible loss of finite active lithium and rapid degradation of battery performances.Therefore,improving the reversibility of lithium metal deposition/stripping and reducing the consumption of active lithium are the two major challenges for anode-free LMBs.Several strategies have been proposed and investigated:1)Combining pre-lithiation of high-capacity cathode materials with the existing battery manufacturing process to build anode-free LMBs.The cathode active material provides active lithium for the whole system as the lithium source,so developing h
关 键 词:无负极锂金属电池 固体电解质界面 集流体 电解质 原位表征
分 类 号:TM911[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.91