机构地区:[1]上海市第一人民医院血管外科,上海201600
出 处:《中国实用外科杂志》2024年第12期1430-1434,共5页Chinese Journal of Practical Surgery
基 金:国家自然科学基金项目(No.82270505);申康市级医院新兴前沿技术联合攻关项目(No.SHDC12022107)。
摘 要:血管移植物在心血管疾病治疗中的广泛应用面临术后感染(VGI)的重大挑战,尤其在复杂手术中可能导致严重并发症和高死亡率。常用血管移植物材料包括合成材料(如聚四氟乙烯、聚对苯二甲酸乙二醇酯、聚氨酯等)和天然材料(如胶原蛋白、丝素蛋白、细菌纤维素、壳聚糖等)。合成材料因其优异的机械性能和化学稳定性广泛应用,但生物相容性差且易形成生物膜。天然材料表现出良好的生物相容性和促进内皮化的能力,但在力学性能和降解速度方面存在优化空间。抗感染技术在移植物材料中的应用不断推进,包括抗菌剂浸渍及涂层、药物释放系统、表面微纳结构设计以及生物活性分子结合。抗菌剂涂层(如银离子、三氯生)能够有效抑制细菌附着和生物膜形成,但传统抗生素面临耐药性问题。药物释放系统通过加载一氧化氮或肝素等生物活性分子,不仅可以抑制感染,还能促进血管生成及内皮细胞增殖。表面微纳结构设计和生物活性分子结合技术进一步增强了移植物的抗菌性能、内皮化能力及血液相容性。未来的研究方向包括智能化和多功能化抗感染血管移植物的开发,通过纳米技术、生物活性分子和智能材料的结合,解决抗生素耐药及生物膜问题。尽管体外研究成果显著,体内验证和长期临床应用的安全性和可行性仍需深入探索。抗感染血管移植物的开发在应对术后感染问题、提升治疗效果和改善病人预后方面具有重要意义,为后续研究提供了明确的方向和科学依据。Vascular grafts are widely used in the treatment of cardiovascular diseases but face significant challenges related to postoperative vascular graft infections(VGI),particularly in complex surgeries where they may lead to severe complications and high mortality rates.Commonly used vascular graft materials include synthetic materials(e.g.,polytetrafluoroethylene,polyethyleneterephthalate,polyurethane) and natural materials(e.g.,collagen,silk fibroin,bacterial cellulose,chitosan).Synthetic materials are extensively applied due to their excellent mechanical properties and chemical stability but exhibit poor biocompatibility and a propensity for biofilm formation.In contrast,natural materials demonstrate good biocompatibility and the ability to promote endothelialization but require optimization in mechanical performance and degradation rate.Advances in anti-infective technologies for vascular graft materials have included antimicrobial agent impregnation and coating,drug delivery systems,surface micro/nanostructure design,and the incorporation of bioactive molecules.Antimicrobial coatings(e.g.,silver ions,triclosan) effectively inhibit bacterial adhesion and biofilm formation,but traditional antibiotics face challenges related to resistance.Drug delivery systems that incorporate bioactive molecules such as nitric oxide or heparin not only inhibit infections but also promote angiogenesis and endothelial cell proliferation.Surface micro/nanostructure designs and bioactive molecule integration further enhance grafts' antibacterial properties,endothelialization potential,and hemocompatibility.Future research directions include the development of intelligent and multifunctional anti-infective vascular grafts by combining nanotechnology,bioactive molecules,and smart materials to address issues such as antibiotic resistance and biofilm formation.While in vitro studies have yielded promising results,further exploration is needed to verify the safety and feasibility of in vivo applications and long-term clinical use.The devel
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...