基于机器学习筛选阿霉素诱导的心肌病中铁死亡的关键基因与验证  

Screening and validation of key genes for ferroptosis in doxorubicin-induced cardiomyopathy on machine learning

在线阅读下载全文

作  者:曾晓滢 朱熹 邓梦婷 丁志强 方红城 窦宇红 ZENG Xiaoying;ZHU Xi;DENG Mengting;DING Zhiqiang;FANG Hongcheng;DOU Yuhong(Shenzhen Clinical College of Integrated Chinese and Western Medicine,Guangzhou University of Chinese Medicine,Shenzhen 518104,China;Department of Cardiovascular Medicine,Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine,Shenzhen 518104,China;Department of Clinical Laboratory,Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine,Shenzhen 518104,China)

机构地区:[1]广州中医药大学深圳中西医结合临床医学院,广东深圳518104 [2]深圳市中西医结合医院心血管科,广东深圳518104 [3]深圳市中西医结合医院检验科,广东深圳518104

出  处:《中国医科大学学报》2025年第1期38-43,共6页Journal of China Medical University

基  金:广东省基础与应用基础研究基金(2023A1515010282);深圳市医疗卫生三名工程项目(SZZYSM202106006)。

摘  要:目的基于生物信息学分析铁死亡在阿霉素诱导的心肌病(DIC)中的关键基因,结合体外实验验证,探讨铁死亡在DIC中的作用。方法二价铁荧光染色佐证DIC中心肌细胞发生铁死亡。检索基因表达综合数据库(GEO)得到GSE207737数据集,与检索FerrDb数据库得到的铁死亡相关基因作交集,对交集基因进行基因本体(GO)以及京都基因和基因组数据库(KEGG)富集分析。将最小绝对值选择与收缩算子(LASSO)回归算法和支持向量机递归特征消除(SVM-RFE)2种机器学习方法得到的基因取交集获得DIC的铁死亡关键基因,并通过实时PCR在正常和DIC模型的H9C2细胞中进行验证,对于生物信息学和实时PCR结果不符者采用Western blotting进一步验证。结果共获得38个DIC的铁死亡相关基因,GO和KEGG分析结果表明这些基因主要参与细胞代谢,通过机器学习方法获得DIC的铁死亡关键基因为Mpc1、Prdx1、Kdm4a、Alox12b和Tfrc。体外实验结果表明,与正常组相比,DIC模型组Mpc1、Prdx1和Kdm4a mRNA表达显著下调(P<0.001),Alox12b mRNA表达显著上调(P<0.001),而Tfrc mRNA和蛋白的表达水平均无统计学差异(P>0.05)。结论Mpc1、Prdx1、Kdm4a和Alox12b为DIC的铁死亡关键基因,可能成为从铁死亡角度防治DIC的靶点。Objective To explore the role of ferroptosis in DIC through bioinformatics analysis of hub genes involved in ferroptosis in doxorubicin-induced cardiomyopathy(DIC),combined with in vitro experimental validation.Methods Divalent iron fluorescence staining confirms the occurrence of ferroptosis in myocardial cells of DIC.The GSE207737 dataset was retrieved from the Gene Expression Comprehensive Database(GEO)and intersected with the FerrDb database to identify ferroptosis-related genes.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses of the intersected genes and intersecting the genes obtained from LASSO regression analysis and SVM-SFR machine learning methods were used to obtain ferroptosis hub genes for DIC.Real-time PCR was used to validate H9C2 cells in the control and DIC model groups,and Western blotting was used to further validate those whose bioinformatics and real-time PCR results that did not match.Results Thirty-eight ferroptosis-related genes in DIC were identified,and GO and KEGG analyses showed that these genes mainly participate in cell metabolism.Five hub genes for ferroptosis in DIC were obtained using machine learning methods:Mpc1,Prdx1,Kdm4a,Alox12b,and Tfrc.Through in vitro experiments,the mRNA expression levels of Mpc1,Prdx1,and Kdm4a were downregulated in the DIC model group compared to those in the control group(P<0.001),whereas the mRNA expression level of Alox12b was upregulated(P<0.001).There were no significant differences in the mRNA or protein expression levels of Tfrc(P>0.05).Conclusion Mpc1,Prdx1,Kdm4a,and Alox12b are key genes involved in ferroptosis in doxorubicin-induced cardiomyopathy and potential targets for the prevention and treatment of doxorubicin-induced cardiomyopathy in ferroptosis.

关 键 词:阿霉素诱导的心肌病 铁死亡 生物信息学 基因 

分 类 号:R542.2[医药卫生—心血管疾病]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象