机构地区:[1]华东师范大学生态与环境科学学院,上海市城市化生态过程与生态恢复重点实验室,上海200241 [2]自然资源部大都市区国土空间生态修复工程技术创新中心,上海200241
出 处:《生态学报》2025年第2期898-910,共13页Acta Ecologica Sinica
基 金:国家重点研发计划项目(2022YFF0802104);上海市2022年度“科技创新行动计划”社会发展科技攻关项目(22dz1202600);司法鉴定科学研究院开放课题(KF202119)。
摘 要:在全球气候变化与城市快速扩张的背景下,认识城市植被动态演变特征及其对环境因素与人为干扰的响应,对于城市环境改善和生态城市建设具有重要意义。然而,快速城市化地区植被高度碎片化,目前对城市植被长期演变与驱动因子空间异质性探究较为缺乏。以上海市为研究对象,基于Landsat卫星遥感影像获取2000—2020年像元尺度增强型植被指数(EVI),在探究逐像元植被动态时空演变及城乡分异的基础上,结合环境因子数据与土地利用数据,基于多元回归残差分析提出像元尺度上解析环境因子(全球背景环境因子与城市区域环境因子)和土地利用变化(植被建设与植被破坏)对城市植被生长影响的框架,定量解析驱动因子对植被生长的影响。结果表明:2000—2020年上海市缓慢绿化(EVI_(slope)=0.053/10a),EVI呈先减少(2000—2007,EVI_(slope)=-0.071/10a)后增加(2008—2020,EVI_(slope)=0.015/10a)趋势。上海市由核心城区向外呈“绿化-褐化-绿化”格局,核心城区、市郊区和农郊区显著绿化,城市扩张区与边缘区褐化明显。其中核心城区绿化趋势最强(EVI_(slope)=0.053/10a),区域内72%的像元显著绿化,城市扩张区与边缘区内分别有31%与33%的像元显著褐化。上海市新增植被像元主要分布在核心城区与市郊区,减少植被像元主要分布在城市扩张区与边缘区。全球背景环境因子普遍促进上海植被绿化,主导约40%的植被像元绿化,使EVI升高0.013/10a。植被建设在核心城区和市郊区内分别主导42.28%和47.83%的植被像元绿化,是区域绿化的主导因子。植被破坏主导城市扩张区和边缘区的植被褐化,但环境因子和植被建设在一定程度上缓解区域内褐化趋势。研究工作可为全球变化和城市扩张背景下城市植被的规划和管理提供借鉴和参考。In the context of climate change and rapid urban expansion,it is of great significance to understand the evolution of vegetation dynamics and its responses to environmental factors and human impacts in order to improve urban environment and support eco-city construction.However,there was still a significant lack of exploration into the spatial heterogeneity of the long-term evolution patterns and driving factors′contributions of urban vegetation since they are highly fragmented in rapidly urbanizing areas.Based on Landsat satellite remote sensing images,this study obtained the Enhanced Vegetation Index(EVI)at the pixel scale from 2000 to 2020,and took Shanghai as the research area to explore the spatiotemporal evolution and urban-rural differentiation of vegetation dynamics at the pixel level.Combining with climatic data and land use data,we proposed a framework for analyzing the impact of environmental factors(including background environmental factors and urban environmental factors)and land use change(including vegetation construction and vegetation destruction)on urban vegetation dynamics at the pixel level to quantitatively analyze how these factors affect the growth of vegetation based on multiple regression residual analysis.We found that in 2000—2020,vegetation was slightly greening in Shanghai(EVI_(slope)=0.009/10a)with the EVI initially decreased(2000—2007,EVI_(slope)=-0.071/10a)and then increased(2008—2020,EVI_(slope)=0.015/10a).There was a‘greening-browning-greening’pattern from the urban core outward in Shanghai,with the urban core,suburbs and rural showed significant greening trend,while the urban expansion areas and urban fringes had shown significant browning trend.The urban core had the strongest greening trend(EVI_(slope)=0.053/10a)among all regions with 72%of the pixels in urban core showed significant greening.In the contrast,31%and 33%of the pixels in urban expansion area and urban fringes had shown significant browning,respectively.The increased vegetation pixels in Shanghai were
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...