检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金建华 孙超 肖睿 邓军[2] 武雍烨 JIN Jianhua;SUN Chao;XIAO Rui;DENG Jun;WU Yongye(Hangzhou Qiantang District Power Company,State Grid Zhejiang Electric Power Co.,Ltd.,Hangzhou 310007,China;State Key Laboratory of Transmission and Distribution Equipment and System Safety and New Technology,Chongqing University,Chongqing 400000,China;Chengdu Power Supply Company,State Grid Sichuan Electric Power Co.,Ltd.,Chengdu 610000,China)
机构地区:[1]国网浙江省电力有限公司杭州市钱塘区供电公司,浙江杭州310007 [2]重庆大学输配电装备及系统安全与新技术国家重点实验室,重庆400000 [3]国网四川省电力公司成都供电公司,四川成都610000
出 处:《电子设计工程》2025年第3期18-23,共6页Electronic Design Engineering
基 金:国家自然科学基金项目(52007011)。
摘 要:针对配电网设备现场运维过程中数据标注率不足的问题,文中设计了一种基于半监督学习策略的混合框架模型。在保留电压序列关键信息的同时将一维信号转换成多特征图输入形式,通过部分标注数据标签信息和数据重构误差进行训练,并结合软投票法进行多特征决策融合。实验测试结果表明,在数据集标注率为30%、60%、70%和90%的条件下,平均识别准确率分别为91.296 0%、95.564 3%、96.726 3%和96.991 8%,相较基于有监督学习的ResNet、VGG等模型,半监督混合框架模型提高了约5%的准确率,为配网架空线路局部放电初期诊断提供了一种新的模型方法,能够提高架空线路的维护和管理水平。In response to the problem of insufficient data annotation rate during the on-site operation and maintenance of distribution network equipment,a hybrid framework model based on semi supervised learning strategy is designed in this paper.While retaining the key information of the voltage sequence,the one-dimensional signal is converted into a multi feature map input form,trained through partially annotated data label information and data reconstruction error,and combined with soft voting method for multi feature decision fusion.The experimental test results show that under the conditions of dataset annotation rates of 30%,60%,70%and 90%,the average recognition accuracy is 91.2960%,95.5643%,96.7263%,and 96.9918%,respectively.Compared with models such as ResNet and VGG based on supervised learning,the semi supervised hybrid framework model improves the accuracy by about 5%,providing a new model method for early diagnosis of partial discharge in overhead transmission lines,it can improve the maintenance and management level of overhead lines.
关 键 词:配网架空线 半监督学习 局部放电 故障诊断 深度学习 信号处理
分 类 号:TN821.6[电子电信—信息与通信工程] TM755[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.143.110