小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法  

Fault diagnosis method for rolling bearings under small samples and variable working conditions based on MTF and SSCAM-MSCNN

在线阅读下载全文

作  者:雷春丽[1,2] 焦孟萱 薛林林 张护强 史佳硕 LEI Chunli;JIAO Mengxuan;XUE Linlin;ZHANG Huqiang;SHI Jiashuo(School of Mechanical and Electrical Engineering,Lanzhou University of Technology,Lanzhou 730050,China;Key Laboratory of Digital Manufacturing and Application,Ministry of Education,Lanzhou University of Technology,Lanzhou 730050,China)

机构地区:[1]兰州理工大学机电工程学院,甘肃兰州730050 [2]兰州理工大学数字制造技术与应用省部共建教育部重点实验室,甘肃兰州730050

出  处:《计算机集成制造系统》2025年第1期278-289,共12页Computer Integrated Manufacturing Systems

基  金:国家自然科学基金资助项目(51465035);甘肃省自然科学基金资助项目(20JR5RA466)。

摘  要:针对滚动轴承在不同工况条件下样本分布不同以及故障样本数量不足导致故障诊断精度低、泛化性能差的问题,提出一种小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法。首先,运用马尔科夫转移场(MTF)将一维振动信号转化为具有时间相关性的二维特征图。其次,提出条纹自校正注意力机制(SSCAM),它不仅可以加强模型在长距离方向上的特征提取能力,还能建立通道间依赖关系,可以对全局有效信息进行捕捉。然后,将SSCAM引入到多尺度神经网络(MSCNN)中,构建出SSCAM-MSCNN模型。最后,将MTF二维特征图输入到所提模型中进行训练,采用优化后的网络模型进行测试并输出分类结果。通过美国凯斯西储大学以及本实验室MFS滚动轴承数据集对所提方法进行验证,同时对后者进行加噪处理,与其他故障诊断模型进行对比。试验结果表明,所提方法在小样本、变工况条件下具有更高的识别精度、更强的泛化性能与抗噪性能。To solve the problems of low diagnosis accuracy and poor generalization performance caused by different sample distribution and insufficient samples,a fault diagnosis method for rolling bearings under small samples and variable working conditions based on MTF and SSCAM-MSCNN was proposed.The Markov Transition Field(MTF)was used to transform one-dimensional vibration signal into two-dimensional feature map with time-dependent.A novel Stripe Self-calibrating Attention Mechanism(SSCAM)was put forward,which could not only enhance feature extraction ability in long-distance direction,but also establish inter-channel dependence and capture global effective information.Then,SSCAM was introduced into Multi-Scale Convolutional Neural Network(MSCNN)to construct SSCAM-MSCNN model.Finally,the MTF two-dimensional feature map was input into the proposed model for training,and the optimized network model was used to test and output the classification results.The proposed method was validated by both Case Western Reserve University data set and MFS rolling bearing data set of our laboratory.Meanwhile,the MFS data was noised up and compared with other fault diagnosis models.The experimental results showed that the proposed method had higher recognition accuracy,stronger generalization performance and anti-noise performance under small samples and variable operating conditions.

关 键 词:滚动轴承 马尔科夫转移场 卷积神经网络 条纹自校正注意力机制 小样本 故障诊断 

分 类 号:TH133.33[机械工程—机械制造及自动化] TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象