Bifurcation analysis of a delayed reaction-diffusion-advection Nicholson's blowflies equation  

在线阅读下载全文

作  者:Mengfan Tan Chunjin Wei Junjie Wei 

机构地区:[1]School of Science,Jimei University Xiamen,Fujian Province 361021,P.R.China [2]Department of Mathematics,Harbin Institute of Technology at Weihai Weihai,Shandong Province 264200,P.R.China

出  处:《International Journal of Biomathematics》2024年第7期53-77,共25页生物数学学报(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.22132004,22072057,and 12171117).

摘  要:In this paper,we investigate the dynamics of a reaction-diffusion Nicholson's blowfies equation with advection.The stability of positive steady state and existence of Hopf bifurcation are obtained by analyzing the distribution of the eigenvalues.Moreover,by using the center manifold theory and normal form method,an explicit algorithm for determining the direction and stability of the Hopf bifurcation is derived.Meanwhile,we find out that the bifurcation value is increasing with respect to the advection rate.Finally,numerical results demonstrate that the advection term causes the population to move from upstream to downstream,which also indicates that advection term plays a key role in the description and interpretation of some common natural phenomena.

关 键 词:Nicholson's blowfies advection delay Hopf bifurcation 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象