基于改进鲸鱼优化算法的放射源定位方法研究  

Research on Radiation Source Localization Method Based on Improved Whale Optimization Algorithm

在线阅读下载全文

作  者:李明旭 洪纵横 从飞云[2] 钮云龙 雷雨 LI Mingxu;HONG Zongheng;CONG Feiyun;NIU Yunlong;LEI Yu(ICNNC Xi'an Nuclear Instrument Co.,Ltd,Xian,710061,China;The State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University,Hangzhou,310027,China;Zhejiang Ecological Environment Group Co.,LTD,Hangzhou,311121,China)

机构地区:[1]西安中核核仪器股份有限公司,西安710061 [2]浙江大学流体动力与机电系统国家重点实验室,杭州310027 [3]浙江生态环境集团有限公司,杭州311121

出  处:《核电子学与探测技术》2025年第1期93-100,共8页Nuclear Electronics & Detection Technology

基  金:西安中核核仪器股份有限公司国土安全核辐射监测系统技术研究及产品研制项目。

摘  要:针对启发式算法在求解放射源定位问题中精度不足、稳定性不强和容易陷入局部最优解的难题,本文提出了一种改进的鲸鱼优化算法。该方法通过结合放射源的历史预测结果,有效提高了局部区域的寻优能力,进而提高了放射源定位的精度和稳定性。仿真和试验结果表明,本文提出的方法能够有效适用于针对放射源的长期监测和轨迹追踪场景。在利用无人机搭载放射源进行移动轨迹追踪的试验中,本文提出的方法的定位误差相较于其他启发式算法降低约10%,定位稳定性提高约20%。To address the problems of insufficient accuracy,weak stability,and the tendency to fall into local optima in heuristic algorithms for radiation source localization,this paper proposed an Improved Whale Optimization Algorithm.This method significantly enhanced the optimization capability in local areas by integrating historical prediction results of the radiation source.Consequently,this approach improved the accuracy and stability of radiation source localization.Simulation and experimental results demonstrated that the proposed method effectively could enhance the accuracy and stability of radiation source localization,making it more suitable for long-term monitoring and trajectory tracking.During the experiment with the drone equipped with a radiation source for mobile trajectory tracking,the proposed method reduced localization error by approximately 10%and improved localization stability by about 20%compared to other heuristic algorithms.

关 键 词:放射源定位 极大似然法 鲸鱼优化算法 

分 类 号:TL81[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象