检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Sazia Parvin Sonia Farhana Nimmy Md Sarwar Kamal
机构地区:[1]Information Technology,Melbourne Polytechnic,Melbourne VIC 3072,Australia [2]Faculty of Economics and Business,University of New South Wales,Sydney ACT 2612,Australia [3]School of Computer Science,Faculty of Engineering and IT,University of Technology Sydney,Sydney NSW 2007,Australia
出 处:《Visual Computing for Industry,Biomedicine,and Art》2024年第1期375-386,共12页工医艺的可视计算(英文)
摘 要:Alzheimer’s disease(AD)is a neurological disorder that predominantly affects the brain.In the coming years,it is expected to spread rapidly,with limited progress in diagnostic techniques.Various machine learning(ML)and artificial intelligence(AI)algorithms have been employed to detect AD using single-modality data.However,recent developments in ML have enabled the application of these methods to multiple data sources and input modalities for AD prediction.In this study,we developed a framework that utilizes multimodal data(tabular data,magnetic resonance imaging(MRI)images,and genetic information)to classify AD.As part of the pre-processing phase,we generated a knowledge graph from the tabular data and MRI images.We employed graph neural networks for knowledge graph creation,and region-based convolutional neural network approach for image-to-knowledge graph generation.Additionally,we integrated various explainable AI(XAI)techniques to interpret and elucidate the prediction outcomes derived from multimodal data.Layer-wise relevance propagation was used to explain the layer-wise outcomes in the MRI images.We also incorporated submodular pick local interpretable model-agnostic explanations to interpret the decision-making process based on the tabular data provided.Genetic expression values play a crucial role in AD analysis.We used a graphical gene tree to identify genes associated with the disease.Moreover,a dashboard was designed to display XAI outcomes,enabling experts and medical professionals to easily comprehend the predic-tion results.
关 键 词:Multimodal Region-based convolutional neural network Layer-wise relevance propagation Submodular pick local interpretable model-agnostic explanations Graphical genes tree Alzheimer’s disease
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.76.4