Convolutional neural network based data interpretable framework for Alzheimer’s treatment planning  

在线阅读下载全文

作  者:Sazia Parvin Sonia Farhana Nimmy Md Sarwar Kamal 

机构地区:[1]Information Technology,Melbourne Polytechnic,Melbourne VIC 3072,Australia [2]Faculty of Economics and Business,University of New South Wales,Sydney ACT 2612,Australia [3]School of Computer Science,Faculty of Engineering and IT,University of Technology Sydney,Sydney NSW 2007,Australia

出  处:《Visual Computing for Industry,Biomedicine,and Art》2024年第1期375-386,共12页工医艺的可视计算(英文)

摘  要:Alzheimer’s disease(AD)is a neurological disorder that predominantly affects the brain.In the coming years,it is expected to spread rapidly,with limited progress in diagnostic techniques.Various machine learning(ML)and artificial intelligence(AI)algorithms have been employed to detect AD using single-modality data.However,recent developments in ML have enabled the application of these methods to multiple data sources and input modalities for AD prediction.In this study,we developed a framework that utilizes multimodal data(tabular data,magnetic resonance imaging(MRI)images,and genetic information)to classify AD.As part of the pre-processing phase,we generated a knowledge graph from the tabular data and MRI images.We employed graph neural networks for knowledge graph creation,and region-based convolutional neural network approach for image-to-knowledge graph generation.Additionally,we integrated various explainable AI(XAI)techniques to interpret and elucidate the prediction outcomes derived from multimodal data.Layer-wise relevance propagation was used to explain the layer-wise outcomes in the MRI images.We also incorporated submodular pick local interpretable model-agnostic explanations to interpret the decision-making process based on the tabular data provided.Genetic expression values play a crucial role in AD analysis.We used a graphical gene tree to identify genes associated with the disease.Moreover,a dashboard was designed to display XAI outcomes,enabling experts and medical professionals to easily comprehend the predic-tion results.

关 键 词:Multimodal Region-based convolutional neural network Layer-wise relevance propagation Submodular pick local interpretable model-agnostic explanations Graphical genes tree Alzheimer’s disease 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象