Data-driven price trends prediction of Ethereum:A hybrid machine learning and signal processing approach  

在线阅读下载全文

作  者:Ebenezer Fiifi Emire Atta Mills Yuexin Liao Zihui Deng 

机构地区:[1]School of Mathematical Sciences,Wenzhou-Kean University,Wenzhou 325060,China [2]Department of Computer Science,Wenzhou-Kean University,Wenzhou 325060,China [3]Academy of Interdisciplinary Research for Sustainability(AIRs),Wenzhou-Kean University,Wenzhou 325060,China

出  处:《Blockchain(Research and Applications)》2024年第4期126-137,共12页区块链研究(英文)

基  金:support from Wenzhou-Kean University Academy of Interdisciplinary Research for Sustainability(WKU-AIRs),China.

摘  要:Due to recent fluctuations in cryptocurrency prices,Ethereum has gained recognition as an investment asset.Given its volatile nature,there is a significant demand for accurate predictions to guide investment choices.This paper examines the most influential features of the daily price trends of Ethereum using a novel approach that combines the Random Forest classifier and the ReliefF method.Integrating the Adaptive Neuro-Fuzzy Inference System(ANFIS)and Short-Time Fourier Transform(STFT)results in high accuracy and performance metrics for Ethereum price trend predictions.This method stands out from prior research,primarily based on time series analysis,by enhancing pattern recognition across time and frequency domains.This adaptability leads to better prediction capabilities with accuracy reaching 76.56%in a highly chaotic market such as cryptocurrency.The STFT’s ability to reveal cyclical trends in Ethereum’s price provides valuable insights for the ANFIS model,leading to more precise predictions and addressing a notable gap in cryptocurrency research.Hence,compared to models in literature such as Gradient Boosting,Long Short-Term Memory,Random Forest,and Extreme Gradient Boosting,the proposed model adapts to complex data patterns and captures intricate non-linear relationships,making it well-suited for cryptocurrency prediction.

关 键 词:Ethereum price prediction ReliefF method Adaptive neuro-fuzzy inference system Cryptocurrency market analysis Short-time fourier transform 

分 类 号:F42[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象