Estimating flexural strength of precast deck joints using Monte Carlo Model Averaging of non-fine-tuned machine learning models  

在线阅读下载全文

作  者:Gia Toai TRUONG Young-Sook ROH Thanh-Canh HUYNH Ngoc Hieu DINH 

机构地区:[1]Faculty of Civil Engineering and Technology,Dong A University,Da Nang 550000,Vietnam [2]School of Architecture,Seoul National University of Science and Technology,Seoul 01811,Republic of Korea [3]Faculty of Civil Engineering,Duy Tan University,Da Nang 550000,Vietnam [4]Institute of Research and Development,Duy Tan University,Da Nang 550000,Vietnam [5]Faculty of Civil Engineering,The University of Da Nang–University of Science and Technology,Da Nang 550000,Vietnam

出  处:《Frontiers of Structural and Civil Engineering》2024年第12期1888-1907,共20页结构与土木工程前沿(英文版)

摘  要:The bending capacity of the precast decks is greatly dependent on the flexural strength exhibited by the joints between them.However,due to the complexity and diversity of this system,precise predictive models are currently unavailable.This study introduces an effective and precise methodology for assessing flexural strength using Monte Carlo Model Averaging(MCMA),a statistical technique that combines the strengths of model averaging(MA)and Monte Carlo simulation.To construct the MCMA model,input variables were derived by analyzing the experimental results,and a database of 433 bending test specimens was compiled.The MCMA model incorporated four different machine learning models,namely decision tree(DT),linear regression(LR),adaptive boosting(AdaBoost),and multilayer perceptron(MLP).Comparative analyses revealed that the MCMA model outperformed baseline models(DT,AdaBoost,LR,and MLP)across all employed metrics.The impact of three different categories on flexural capacity was explored through boxplot analysis.Furthermore,a comparison between the MCMA model and the strut and tie model highlighted the superior performance of the MCMA model.The impact of input variables on the flexural strength prediction was further examined through Shapley Additive exPlanations based feature importance and global interpretation,as well as parametric study.

关 键 词:precast deck joint flexural strength machine learning model averaging Monte Carlo method parameter tuning 

分 类 号:TU528[建筑科学—建筑技术科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象