检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐建波[1,2] 胡致远 彭举 夏何炎 丁俊杰 张玉玉 梅小明 TANG Jianbo;HU Zhiyuan;PENG Ju;XIA Heyan;DING Junjie;ZHANG Yuyu;MEI Xiaoming(School of Geosciences and Info-physics,Central South University,Changsha 410083,China;Hunan Geospatial Information Engineering and Technology Research Center,Changsha 410007,China)
机构地区:[1]中南大学地球科学与信息物理学院,湖南长沙410083 [2]湖南省地理空间信息工程技术研究中心,湖南长沙410007
出 处:《测绘学报》2025年第1期182-193,共12页Acta Geodaetica et Cartographica Sinica
基 金:国家自然科学基金(42430110,42271462,42171441);湖南省重点研发计划(2024AQ2026);湖南省自然科学基金(2024JJ1009,2024JJ8343,2022JJ30703);湖南省教育厅资助科研项目。
摘 要:随着移动定位技术的快速发展,众源车辆轨迹数据已成为导航路网地图构建与实时更新的重要数据源。道路交叉口是路网地图和路径规划的关键结点,准确识别轨迹数据中的道路交叉口是基于众源轨迹数据构建导航路网地图的重要基础。目前基于众源轨迹数据的道路交叉口识别方法主要分为基于运动特征、视觉特征和深度学习的方法。然而,由于交叉口形状、大小的差异性及轨迹数据密度分布的异质性,采用单一策略或方法难以满足不同轨迹数据场景下(如轨迹稀疏区域和交叉口分布密集区域)的道路交叉口准确完整提取,而导致交叉口的漏提取或错误识别等问题。为此,本文基于组合优化思想,提出了一种融合视觉特征与运动特征的众源轨迹数据道路交叉口识别方法。该方法在提取车辆运动特征识别道路交叉口的基础上,结合人类在观察轨迹数据时的视觉认知过程,通过融合轨迹数据的运动特征与视觉特征,实现不同复杂场景下的道路交叉口识别与结果优化。采用成都市网约车轨迹数据和武汉市出租车轨迹数据进行试验与对比分析,结果表明相比于现有代表性方法,本文方法对道路交叉口识别精度和召回率均具有显著提升。With the rapid development of mobile positioning technology,crowdsourced vehicle trajectory data has become an important data source for map construction and real-time update of road network maps.Road intersections are the key nodes of a road network in path planning.Accurate identification of road intersections in trajectory data is an important basis for constructing navigation road maps based on crowdsource trajectory data.At present,the road intersection recognition methods based on crowdsourced trajectory data are mainly divided into motion feature-based methods,visual feature-based methods,and deep learning-based methods.Due to the differences in the shape and size of intersections and the heterogeneity of the density distribution of crowdsourced trajectory data,it is still difficult to extract road intersections accurately and completely under different data scenarios(such as areas with sparse data and areas containing dense distributed intersections)by using a single strategy and method,which leads to problems such as omission or wrong recognition of intersections.Therefore,based on the idea of combinatorial optimization,this paper proposes a road intersection recognition method in crowdsourced trajectory data by fusing visual features and motion features.This method first extracts vehicle motion features to recognize road intersections,and then mimics human visual cognitive process to realize road intersection recognition in different complex scenes by fusing motion features and visual features.Experimental results on trajectory datasets in Chengdu and Wuhan show that compared with the existing representative methods,the proposed method has significantly improved the accuracy and recall rate of road intersection recognition.
关 键 词:道路交叉口 众源轨迹数据 数据稀疏 特征融合 路网构建
分 类 号:P208[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.233