检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘龙成 张喆安 LIU Longcheng;ZHANG Zhean(Digital Uranium Mining and Metallurgy Center,Beijing Research Institute of Chemical Engineering and Metallurgy,CNNC,Beijing 101149)
机构地区:[1]核工业北京化工冶金研究院数字化铀矿采冶中心,北京101149
出 处:《湿法冶金》2025年第1期1-9,共9页Hydrometallurgy of China
摘 要:针对原地浸出动态开采体系在实际应用中存在的实时数据分析不足、智能决策支持欠缺及动态优化能力有限等问题,分析了数字孪生技术与原地浸出采铀工艺相结合的优势,通过与缪子成像、光纤水位监测、先进传感技术、人工智能和大数据分析等先进关键技术相结合,构建了一套高效的数智化铀矿采矿平台。该平台包括地质结构模型、地下水渗流模型、反应运移模型和智能代理模型,核心算法涵盖深度学习、数据同化、多目标优化和不确定性分析。原地浸出动态开采体系的建立有助于提高铀资源的开发利用效率,能为其他矿产资源的开采提供有益参考,具有一定的理论意义和实践价值。To address the problems such as insufficient real-time data analysis,lack of intelligent decision-making support,and limited dynamic optimization capabilities of in-situ leaching dynamic mining system in practical application,the advantages of integrating Digital Twin technology with the in-situ leaching process for uranium extraction were analyzed.By incorporating advanced technologies such as muon imaging,fiber-optic water level monitoring,advanced sensing technologies,artificial intelligence,and big data analysis,an efficient digital-intelligent uranium mining platform was constructed.The platform includes geological structure model,groundwater seepage model,reactive transport model,and intelligent agent model.The core algorithms cover deep learning,data assimilation,multi-objective optimization,and uncertainty analysis.The establishment of the dynamic in-situ leaching mining system can improve the efficiency of uranium resource development and can provide valuable reference for the extraction of other mineral resources,thus having certain theoretical significance and practical value.
关 键 词:原地浸出 铀 动态开采体系 数字孪生技术 数智开采平台 多源异构数据
分 类 号:TL212[核科学技术—核燃料循环与材料]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33