检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李建松 李海[1] 于文莉[2] 郝亚明 LI Jiansong;LI Hai;YU Wenli;HAO Yaming(School of Information and Electronic Engineering,Shandong Technology and Business University,Yantai 264005,China;School of Computer Science and Technology,Shandong Technology and Business University,Yantai 264005,China)
机构地区:[1]山东工商学院信息与电子工程学院,山东烟台264005 [2]山东工商学院计算机科学与技术学院,山东烟台264005
出 处:《量子电子学报》2025年第1期70-79,共10页Chinese Journal of Quantum Electronics
基 金:国家自然科学基金项目(11547036);山东省自然科学基金青年项目(ZR2011FL009);烟台市科技创新发展计划基金项目(2022JCYJ044)。
摘 要:针对通常情况下实现高性能的绝热捷径量子奥托循环(QOC)需要施加复杂调控场的难题,研究了实验上相对便于操控的线性驱动场下QOC的性能特征。利用基于策略函数的深度强化学习,对以单量子比特为工质的QOC膨胀与压缩过程的附加驱动场进行优化,实现了线性驱动场下高性能的QOC。与非绝热自由演化方案下的QOC对比,优化附加驱动方案下的QOC在输出功、功率以及效率方面都表现出显著的优越性。特别是在较短循环周期中,自由演化方案下的QOC因大量不可逆功的产生,完全抑制了正功的输出,然而优化驱动方案下的QOC却仍能正常运行(有正功输出)。本工作初步检验了深度强化学习在优化量子热机性能中的有效性。In response to the challenge that complicated control fields are generally required for realizing the high-performance shortcuts to adiabaticity quantum Otto cycle(QOC),the performance characteristics of QOC under linear driving field which is easy to manipulate in experiment,are studied in this work.Using the strategy-based deep reinforcement learning,the driving field added during the expansion and compression processes of QOC with single qubit as the working medium is optimized,and then the high-performance QOC under linear driving field can be realized.Compared with the scheme of QOC with the non-adiabatic free evolution,the QOC under the optimized additional driving scheme exhibits significant advantages in the output work,power and efficiency.Especially,in the case of short-cycle period,for the QOC under free evolution scheme,the output of positive work is completely suppressed due to the generation of a large amount of irreversible work,while the QOC under the optimized driving scheme can still operate normally(with output positive work).This work preliminarily tests the validity of deep reinforcement learning in optimizing the performance of quantum engine.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43