检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Marius Benkert Michael Heroth Rainer Herrler Magda Gregorová Helmut C.Schmid
机构地区:[1]CAIRO,THWS,Franz-Horn-Str 2,Würzburg,97082,Germany [2]Advanced Development E-Motor Simulation,ZF Friedrichshafen AG,Rotgenstr.2,97424 Schweinfurt,Germany
出 处:《Autonomous Intelligent Systems》2024年第1期297-306,共10页自主智能系统(英文)
摘 要:The generation and optimization of simulation data for electrical machines remain challenging,largely due to the complexities of magneto-staticfinite element analysis.Traditional methodologies are not only resource-intensive,but also time-consuming.Deep learning models can be used to shortcut these calculations.However,challenges arise when considering the unique parameter sets specific to each machine topology.Building on two recent studies(Parekh et al.in IEEE Trans.Magn.58(9):1-4,2022;Parekh et al.,Deep learning based meta-modeling for multi-objective technology optimization of electrical machines,2023,arXiv:2306.09087),that utilized a variational autoencoder to cohesively map diverse topologies into a singular latent space for subsequent optimization,this paper proposes a refined architecture and optimization workflow.Our modifications aim to streamline and enhance the robustness of both the training and optimization processes,and compare the results with the variational autoencoder architecture proposed recently.
关 键 词:Deep learning Design optimization Electrical machines Variational autoencoder
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222