Temporal stability analysis and thermal performance of non-Newtonian nanofluid over a shrinking wedge  

在线阅读下载全文

作  者:Ahmed Zeeshan Muhammad Imran Khan Aaqib Majeed Mohammed Sh.Alhodaly 

机构地区:[1]Department of Mathematics and Statistics,Faculty of Sciences,International Islamic University,Islamabad 44000,Pakistan [2]Department of Mathematics,College of Science,Korea University,145 Aman-ro,Seongbuk-gu,Seoul 02841,South Korea [3]Department of Mathematics,University of Faisalabad,Faisalabad 38000,Pakistan [4]Nonlinear Analysis and Applied Mathematics(NAAM)-Research Group,Department of Mathematics,Faculty of Science,King Abdulaziz University,Jeddah 21589,Saudi Arabia

出  处:《Propulsion and Power Research》2024年第4期586-596,共11页推进与动力(英文)

摘  要:The authors use a temporal stability analysis to examine the hydrodynamics performance of flow response quantities to investigate the impacts of pertained parameters on Casson nanofluid over a porous shrinking wedge.Thermal analysis is performed in the current flow with thermal radiation and the viscous dissipation effect.Boungiorno’s model is used to develop flow equations for Casson nanofluid over a shrinking wedge.An efficient similarity variable is used to change flow equations(PDEs)into dimensionless ordinary differential equations(ODEs)and numerical results are evaluated using MATLAB built-in routine bvp4c.The consequence of this analysis reveals that the impact of active parameters on momentum,thermal and concentration boundary layer distributions are calculated.The dual nature of flow response output i.e.Cfx is computed for various values of bT Z 2:5;3:5;4:5,and the critical value is found to be-1:544996,-1:591,and-1:66396.It is perceived that the first(upper branch)solution rises for the temperature profile when the value of thermal radiation is increased and it has the opposite impact on the concentration profile.Thermal radiation has the same critical value for Nux and Shx.The perturbation scheme is applied to the boundary layer problem to obtain the eigenvalues problem.The unsteady solution fðh;tÞconverges to steady solution foðhÞfor t/N when g0.However,an unsteady solution fðh;tÞdiverges to a steady solution foðhÞfor t/N when g<0.It is found that the boundary layer thickness for the second(lower branch)solution is higher than the first(upper branch)solution.This investigation is the evidence that the first(upper branch)solution is stable and reliable.

关 键 词:Wedge flow Casson nanofluid Thermal radiation Stability test EIGENVALUE 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象