High-dimensional traffic test scenario derivation for autonomous vehicles  

在线阅读下载全文

作  者:Guoyu Zhang Aijing Kong Jian Sun Peng Hang 

机构地区:[1]Tongji University Ringgold standard institution,1239 Siping Road,Shanghai 200092,China

出  处:《Chain》2024年第4期354-371,共18页链(英文)

摘  要:To enhance the testing efficiency of autonomous vehicles,it is essential to derive intelligent traffic test scenarios.Current methods face limitations such as reliance on subjective analysis and neglect of inter-element correlations.This study introduces Kalman particle filtering theory for high-dimensional traffic scenario derivation.By analyzing comprehensive energy fields in normalized scenes with various elements,we define benchmark scenes using field energy theory.Multi-level research is conducted on processing high-dimensional spatial element data,proposing a normative paradigm for weight allocation among scene elements.We perform generalized derivation by extending hierarchical elements based on offset values,meeting functional verification requirements.Simulation experiments comparing risk event detection,decision-making,and feedback behavior between the proposed method and actual driving data show a steering matching index of 0.92,a longitudinal speed matching index of 0.96,and an root mean squared error(RMSE)mean value of 0.06.

关 键 词:pan-scene architecture field theory particle filter intelligent driving scenario intelligent driving system 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象