检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Guoyu Zhang Aijing Kong Jian Sun Peng Hang
机构地区:[1]Tongji University Ringgold standard institution,1239 Siping Road,Shanghai 200092,China
出 处:《Chain》2024年第4期354-371,共18页链(英文)
摘 要:To enhance the testing efficiency of autonomous vehicles,it is essential to derive intelligent traffic test scenarios.Current methods face limitations such as reliance on subjective analysis and neglect of inter-element correlations.This study introduces Kalman particle filtering theory for high-dimensional traffic scenario derivation.By analyzing comprehensive energy fields in normalized scenes with various elements,we define benchmark scenes using field energy theory.Multi-level research is conducted on processing high-dimensional spatial element data,proposing a normative paradigm for weight allocation among scene elements.We perform generalized derivation by extending hierarchical elements based on offset values,meeting functional verification requirements.Simulation experiments comparing risk event detection,decision-making,and feedback behavior between the proposed method and actual driving data show a steering matching index of 0.92,a longitudinal speed matching index of 0.96,and an root mean squared error(RMSE)mean value of 0.06.
关 键 词:pan-scene architecture field theory particle filter intelligent driving scenario intelligent driving system
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42