Generative model-assisted sample selection for interest-driven progressive visual analytics  

在线阅读下载全文

作  者:Jie Liu Jie Li Jielong Kuang 

机构地区:[1]College of Intelligence and Computing,Tianjin University,Tianjin,China

出  处:《Visual Informatics》2024年第4期97-108,共12页可视信息学(英文)

基  金:supported by NSFC project (62372321).

摘  要:We propose interest-driven progressive visual analytics.The core idea is to filter samples with features of interest to analysts from the given dataset for analysis.The approach relies on a generative model(GM)trained using the given dataset as the training set.The GM characteristics make it convenient to find ideal generated samples from its latent space.Then,we filter the original samples similar to the ideal generated ones to explore patterns.Our research involves two methods for achieving and applying the idea.First,we give a method to explore ideal samples from a GM’s latent space.Second,we integrate the method into a system to form an embedding-based analytical workflow.Patterns found on open datasets in case studies,results of quantitative experiments,and positive feedback from experts illustrate the general usability and effectiveness of the approach.

关 键 词:Sample selection Interest-driven Generative model Visual analytics Latent space exploration 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象