检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨笑天 鱼昕 刘铭 王梁 谭金林 吴意 YANG Xiaotian;YU Xin;LIU Ming;WANG Liang;TAN Jinlin;WU Yi(China Academy of Space Technology(Xian),Xi'an 710100,China;General Department of the System,Shaanxi Aerospace Technology Application Research Institute Company Limited,Xi'an 710100,China;School of Mathematics and Statistics,Changchun University of Technology,Changchun 130012,China)
机构地区:[1]西安空间无线电技术研究所,西安710100 [2]陕西航天技术应用研究院有限公司系统总体部,西安710100 [3]长春工业大学数学与统计学院,长春130012
出 处:《吉林大学学报(信息科学版)》2024年第6期1048-1057,共10页Journal of Jilin University(Information Science Edition)
基 金:吉林省科技厅基金资助项目(20200201157JC)。
摘 要:针对光学遥感数据中舰船小目标数量占比大,长宽比大且多个目标紧密排列难以检测的问题,提出一种基于YOLO V5(You Only Look Once V5)的光学遥感舰船小目标检测算法——UPCBAM-RYOLO V5(Upsampling Convolutional Attention Block Module-RYOLO V5)算法。该算法设计了一种上采样注意力机制模块,增强了网络对小尺寸目标特征提取能力,并在边框回归公式中引入旋转角度损失,提高了算法对舰船外观和方向的感知能力。基于GF1、GF2组成的舰船小目标数据集实验,结果表明,UPCBAM-RYOLO V5算法模型提升了舰船小目标检测的定位精度和分类精度,其中P、R、 MAP(Mean Average Precision)值分别达到93%、94%和95%,较传统YOLO V5模型分别提高3%、7%和7%。对网络中上采样注意力机制模块添加位置的消融实验结果表明,相较于在Backbone和Prediction处加入UPCBAM,在Neck处加入UPCBAM对遥感影像舰船小目标的检测影响最大,性能最优,P、R和MAP值分别提高了5%、4%和2%。从而验证了UPCBAM-RYOLO V5模型在光学遥感舰船小目标检测方面具有一定的研究意义。In order to solve the problems of large proportion of small targets in optical remote sensing data,the aspect ratio is large,and multiple targets are closely arranged and difficult to detect,we present an optical remote sensing small ship target detection algorithm based on the YOLO V5(You Only Look Once V5),UPCBAM-RYOLO V5(Upsampling Convolutional Attention Block Module-RYOLO V5)algorithm.An up-sampling attention mechanism module is designed to enhance the feature extraction ability of small size targets.The rotation angle loss is introduced into the frame regression formula to improve the algorithm's perception ability of the ship's appearance and direction.Based on the experiment of small ship target datasets composed of CFl and GF2,the results show that the UPCBAM-RYOLO V5 algorithm model improves the positioning accuracy and classification accuracy of small ship target detection.The P value,R value,and MAP(Mean Average Precision)value reach 93%,94%,and 95%respectively,which are 3%,7%,and 7%higher than the original YOLO V5 model.In the upsampled attention-mechanism module added location ablation experiment to the network,the results show that compared with the addition of UPCBAM in Backbone and Prediction,the addition of UPCBAM in Neck has the greatest influence on the detection of small target ships in remote sensing images.The performance is the best,with P value,R value,and MAP value increased by 5%,4%,and 2%,respectively.The UPCBAM-RYOLO V5 model is proved to have a certain research significance in optical remote sensing ship small target detection.
关 键 词:光学遥感数据 舰船小目标 UPCBAM-RYOLO V5算法 上采样注意力机制 旋转角度
分 类 号:TP319.4[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.98.87