机构地区:[1]南通大学化学化工学院,南通226019 [2]南通大学机械工程学院,南通226019 [3]上海空间电源研究所,空间电源技术国家重点实验室,上海200245 [4]南通南京大学材料工程技术研究院,南通市新型储能材料重点实验室,南通226000
出 处:《科学通报》2025年第2期151-163,共13页Chinese Science Bulletin
基 金:国家自然科学基金(22073052);国家重点实验室基金(YF07050123F2861)资助。
摘 要:随着全球化石能源逐渐枯竭和温室效应加剧,人们赖以生存的自然环境遭到了严重破坏,如何开发新能源或高效的能源转换装置已经成为当前的研究热点.质子交换膜燃料电池(PEMFCs)作为高效的能源转换装置可以通过电化学反应将氢气(H2)中储存的化学能直接转化为电能,具有零排放、零污染、转化效率高等优点,其商业化发展能够有效地缓解当前的能源与环境危机.由于工作温度差异,PEMFCs分为低温质子交换膜燃料电池(LTPEMFCs)和高温质子交换膜燃料电池(HT-PEMFCs).贵金属铂(Pt)是PEMFCs中最常用的催化剂材料之一,然而Pt的抗毒化能力相对较弱,导致其催化剂稳定性较差.此外,Pt的低利用率、高成本,进一步限制了其大规模商业化应用.PEMFCs燃料中存在微量的杂质气体(尤其是一氧化碳(CO)),CO在反应过程中会吸附在催化剂表面而不容易去除,导致Pt催化剂表面活性位点被毒化.除了CO的毒化作用,HT-PEMFCs催化层界面由于磷酸(PA)的随机分布也会引起Pt催化剂的毒化问题,进一步导致催化剂的活性降低.因此,开发高效抗毒化Pt基催化剂并探究其抗毒化机制是推动PEMFCs发展的关键.本文系统地阐述了PEMFCs中Pt基催化剂的毒化问题,重点讨论Pt基催化剂的设计、合成及其抗毒化机制;最后,对PEMFCs中Pt基催化剂的发展与挑战进行探讨和展望.The gradual depletion of fossil energy sources and the excessive emission of greenhouse gases have significantly contributed to global warming,profoundly impacting the natural environment.Proton exchange membrane fuel cells(PEMFCs),specifically hydrogen(H2)fuel cells,offer a promising solution by converting chemical energy directly into electrical energy through electrochemical reactions.PEMFCs boast numerous advantages,including zero emissions,high power density,rapid response times,and a simple structure,effectively mitigating the effects of the energy crisis and environmental degradation.Based on their operating temperatures,PEMFCs are categorized into low-temperature PEMFCs(LT-PEMFCs)and high-temperature PEMFCs(HT-PEMFCs).In LT-PEMFCs,operating at lower temperatures in the presence of water,water serves as the proton transport medium.Conversely,in HT-PEMFCs,proton conductivity relies on a different mechanism.Nafion,which is highly dependent on a hydrated condition,exhibits a dramatic drop in conductivity when the operating temperature exceeds 100℃.Polybenzimidazole(PBI)membranes,known for their excellent thermal and chemical stability,have garnered significant attention for high-temperature PEM applications,providing better proton conductivity under anhydrous conditions.However,large-scale hydrogen production technologies often fail to meet purity requirements due to high associated costs,with less than 5%of the globally produced H2 coming from electrolytic water.For instance,most available H2 is derived from methane steam reforming,introducing gaseous impurities such as carbon monoxide(CO),sulfuretted hydrogen(H2S),and ammonia(NH3)when used as fuel.These impurities can significantly degrade the performance of the electrode catalyst.The presence of trace amounts of CO in H2 fuel poisons the catalyst during the reaction process.When reformate H2 is supplied in a PEMFC,these concentrations CO can cause CO-poisoning and activity degradation.For the commercial Pt anodes,it is noted that the acknowledged maximum
关 键 词:质子交换膜燃料电池 催化层 Pt基催化剂 CO毒化 磷酸毒化
分 类 号:TM911.4[电气工程—电力电子与电力传动] O643.36[理学—物理化学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...