高速率AEM电解水自支撑NiFe基气体扩散电极  

Self-standing NiFe based gas diffusion electrodes toward high-rate AEM water electrolysis

在线阅读下载全文

作  者:张登辉 王浩宇 赵文馨 王虎啸 王轲 张振院 寇天一 Denghui Zhang;Haoyu Wang;Wenxin Zhao;Huxiao Wang;Ke Wang;Zhenyuan Zhang;Tianyi Kou(School of Mechanical,Electrical and Information Engineering,Shandong University,Weihai 264209,China;School of Space Science and Physics,Shandong University,Weihai 264209,China;SDU-ANU Joint Science College,Shandong University,Weihai 264209,China)

机构地区:[1]山东大学机电与信息工程学院,威海264209 [2]山东大学空间科学与物理学院,威海264209 [3]山东大学澳国立联合理学院,威海264209

出  处:《科学通报》2025年第2期164-178,共15页Chinese Science Bulletin

基  金:国家自然科学基金(52301208);山东省优秀青年基金(海外)(2023HWYQ-019);江苏省自然科学基金(BK20230259)资助。

摘  要:阴离子交换膜(anion exchange membrane,AEM)电解水是一种新兴的低温电解水技术,其可兼容非贵金属催化剂且能在低温条件下快速响应,成为启动慢且效率低的传统碱性电解水替代技术路线.然而,由于阳极反应的析氧、传质动力学迟滞,AEM电解水在高速率(电流密度>400 mA cm^(-2))条件下的性能仍然受限.开发高性能析氧气体扩散电极是实现高速率AEM电解水的关键.通过将高本征活性NiFe基析氧催化剂锚定在气体扩散层,形成一种快速传荷传质的自支撑气体扩散电极,展现了突出的高速率析氧活性,近两年在AEM电解水领域受到极大关注.鉴于该方向的重要性和快速发展的趋势,本文重点围绕面向高速率AEM电解水的自支撑结构NiFe基气体扩散电极展开讨论,首先简要介绍了AEM电解水面临的关键挑战及评估指标,其次分类重点评述了通过磁控溅射、阴极电沉积、腐蚀工程、水热等策略实现NiFe基气体扩散电极的代表性研究进展,辩证分析了不同制备策略的优势,对其制备路线-电极结构及性能关联展开了讨论.最后,探讨了自支撑NiFe基析氧气体扩散电极在开发与工况表征过程中面临的关键挑战,以期为高速率AEM电解水自支撑析氧气体扩散电极的开发提供参考.China’s ambitious carbon peak and carbon neutrality strategic goals have largely pushed the advances of renewable energy technology.Hydrogen gas is a well-known clean fuel and feedstock in chemical industries,and has gained increased attention in establishing the renewable energy ecosystem.About 90%of the hydrogen gas in China,however,is generated through fossil fuels dependent strategies such as steam reforming.These conventional petrochemical routes contribute to a high carbon footprint and represent unsustainable hydrogen production methods.Low temperature water electrolysis driven by renewable electricity is an alternative way to produce hydrogen and the only byproduct is oxygen,making itself sustainable and carbon footprint free.The commercialized low temperature water electrolysis techniques include alkaline water electrolysis and proton exchange membrane(PEM)water electrolysis.Alkaline water electrolysis(AWE)is a mature electrolysis technology and allows for the non-noble metal-based catalysts.However,its voltage efficiency is insufficient when electrolysis current goes up beyond 400 mA cm^(-2).In addition,the long start-up time of AWE cannot match with the intermittent renewable energy.PEM water electrolysis incorporates the design of membrane electrode assembly(MEA)and its voltage efficiency is significantly higher than that of AWE at high-rate conditions(current density above 400 mA cm^(-2)),whereas the noble metal catalysts and PEM highly increase the costs of the electrolyzers.Anion exchange membrane(AEM)water electrolysis is a newly developed hydrogen generation technique,and it implements MEA design as well as non-noble metal-based catalysts in alkaline or neutral electrolytes.It thus shows unique advantages in both fast start-up and low costs.Nonetheless,the voltage efficiency of AEM water electrolysis is still not competing with PEM water electrolysis at high-rate conditions,and the sluggish kinetics and mass transfer of oxygen evolution reaction(OER)are critical limiting factors.To address the

关 键 词:AEM电解水 高速率 析氧反应 自支撑 NiFe基催化剂 

分 类 号:O643.36[理学—物理化学] TQ116.21[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象