检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗洋 崔春雨 费慧龙 Yang Luo;Chunyu Cui;Huilong Fei(College of Chemistry and Chemical Engineering,State Key Laboratory of Chemo/Biosensing and Chemometrics,Hunan University,Changsha 410082,China)
机构地区:[1]湖南大学化学化工学院,化学生物传感与计量学国家重点实验室,长沙410082
出 处:《科学通报》2025年第2期179-192,共14页Chinese Science Bulletin
基 金:国家自然科学基金(22209046);湖南省自然科学基金(2022JJ30123)资助。
摘 要:电子器件和新能源汽车的快速发展促使人们不断追求具有更高能量密度的储能器件.锂离子电池作为当前最主流的储能器件,其负极材料以石墨为主,然而石墨较低的理论比容量已无法满足高能量密度的发展需求.锂金属负极具有极高的理论比容量和最低的嵌锂电位,被认为是下一代锂离子电池最理想的负极材料.但是,锂金属负极在电镀和剥离过程中极易形成锂枝晶,所带来的安全性和稳定性问题严重阻碍了其商业化应用.近年来,金属单原子(SACs)策略常被用来解决上述难题.SACs因其独特的局部配位环境、极高的表面自由能和接近100%的原子利用率,能够促进锂离子在基底上的传输并诱导锂的均匀沉积,在抑制锂枝晶生长方面展现出了极大的潜力.基于此,本文综述了近年来SACs应用于锂金属负极的研究进展,从作用机制着手,围绕五个维度,包括SACs调控基底亲锂性、SACs提高碳基底结构稳定性、SACs修饰电池隔膜用于调控电解液中锂离子均匀分布、SACs加快去溶剂化动力学,以及SACs提高电极表面扩散动力学,对其在锂金属负极上的具体应用做了全面介绍,并在此基础上提出了SACs应用于锂金属负极的主要挑战,期望能为锂金属电池未来的发展提供思路.The ever-increasing penetration scenarios of electronic devices as well as electric vehicles have spurred the development of rechargeable batteries with high energy density,long cycle life,and high security.Compared with several other types of rechargeable batteries,Li-ion batteries have emerged as the most widely employed electrochemical energy storage system,attributed to their long cycle life,high operating voltage,small self-discharge,and environmental friendliness.Currently,most mature and commercial Li-ion batteries rely on graphite anode.However,the theoretical specific capacity of graphite anode is approaching the critical limit after many years of research,falling short of the high-energy-density demands required for cutting-edge electronic devices.Consequently,developing new-generation Li-ion batteries with high theoretical specific capacity and high energy density has become an irresistible trend.In this context,Li metal anode has been considered as one of the most promising candidates for next-generation Li-ion batteries,due to the ultrahigh theoretical capacity(3860 mAh g^(-1))and lowest redox potential(−3.04 V vs the standard hydrogen electrode).Unfortunately,the practical application of Li metal anode is primarily hindered by severe dendritic Li deposition,which stems from uneven Li-ion flux during battery operation.On one hand,uncontrollable dendritic Li growth can easily penetrate the separator,leading to short circuits,thermal runaway,cell combustion,and even explosions.On the other hand,massive needle-like Li dendrites with high specific surface area constantly cause rupture and rebirth of the structurally inhomogeneous and mechanically fragile solid-electrolyte interphase(SEI),leading to sustained consumption of electrolyte and Li ions during cycling.The above issues result in low Coulombic efficiency,poor cycle performance and even serious safety risks,precluding the practical use of Li metal anode.Various strategies have been proposed to address the aforementioned issues and improve the pe
关 键 词:锂金属负极 金属单原子催化剂 锂枝晶 亲锂性 扩散能垒 去溶剂化
分 类 号:TM912[电气工程—电力电子与电力传动] O643.36[理学—物理化学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.158.174