检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘晓东[1] 戴吉 杨帆 李花[1] 赵兴[1] 卞佳楠 LIU Xiaodong;DAI Ji;YANG Fan;LI Hua;ZHAO Xing;BIAN Jia'nan(Zhan Tianyou College of Dalian Jiaotong University(CRRC College),Dalian 116028,China;Chongqing CRRC Changke Track Vehicles Co.,Ltd.,Chongqing 401133,China;Changchun CRRC Rail Vehicles Co.,Ltd.,Changchun 130062,China)
机构地区:[1]大连交通大学詹天佑学院(中车学院),辽宁大连116028 [2]重庆中车长客轨道车辆有限公司,重庆401133 [3]长春中车轨道车辆有限公司,吉林长春130062
出 处:《测控技术》2025年第1期41-50,共10页Measurement & Control Technology
基 金:国家自然科学基金青年基金项目(62001079)。
摘 要:针对转向架构架磁粉探伤缺陷识别环节人工目测效率低的现状,提出一种基于YOLO-CET(You Only Look Once based on CoTNet-Efficient-Transformer blocks)的探伤图像缺陷自动识别算法,实现对构架表面真伪缺陷的智能识别。以YOLOv5(You Only Look Once version 5)为基础模型,在骨干特征提取网络引入轻量化CoTNet(Contextual Transformer Networks)网络层,实现缺陷特征的多尺度融合与提取。加入高效通道注意力机制,在不增加网络计算量的同时提高模型的鲁棒性和泛化性。增加一个小尺寸缺陷检测头用于减轻不同尺寸特征带来的尺度方差影响,同时引入视觉自注意力模块,增强小目标缺陷的抓取识别能力。利用自建的构架表面缺陷探伤数据集进行测试,结果表明,与YOLOv5相比,所提出的YOLO-CET使检测平均精度提升33.8%,F1-Score提升0.26,浮点运算量仅增加1.5 B,该模型可实现缺陷的自动检测,有效解决背景误判、细小缺陷漏检等问题。A YOLO-CET(You Only Look Once based on CoTNet-Efficient-Transformer blocks)based automat-ic defect recognition algorithm for magnetic particle inspection of bogie frames is proposed to address the low efficiency of manual visual inspection in defect recognition.This algorithm achieves intelligent recognition of true and false defects on the surface of the frame.Based on the YOLOv5(You Only Look Once version 5)mod-el,a lightweight CoTNet(Contextual Transformer Networks)layer is introduced into the backbone feature ex-traction network to achieve multi-scale fusion and extraction of defect features.By incorporating an efficient channel attention mechanism,the robustness and generalization of the model can be improved without increas-ing the computational complexity of the network.A small-sized defect detection head is added to alleviate the scale variance caused by features of different sizes,and a visual self attention module is introduced to enhance the ability to capture and recognize small target defects.A self built dataset for frame surface defect inspection is used for testing,the results show that compared with YOLOv5,the proposed YOLO-CET improves the aver-age detection accuracy by 33.8%,the F1-Score by 0.26 and the floating point operation by only 1.5 B.This model can achieve automatic defect detection and effectively solve problems such as background misjudgment and missed detection of small defects.
关 键 词:转向架构架 磁粉探伤 缺陷检测 YOLO-CET 注意力机制
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15