检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Masataka Iwai Chen Jiang Haidong Liu
机构地区:[1]Department of Mathematics,Graduate School of Science,Osaka University,Osaka 560-0043,Japan [2]Shanghai Center for Mathematical Sciences&School of Mathematical Sciences,Fudan University,Shanghai 200438,China [3]Department of mathematics,Sun Yat-sen University,Guangzhou 510275,China
出 处:《Science China Mathematics》2025年第1期1-18,共18页中国科学(数学英文版)
基 金:supported by National Natural Science Foundation of China for Innovative Research Groups(Grant No.12121001);National Key Research and Development Program of China(Grant No.2020YFA0713200);supported by Grant-in-Aid for Early Career Scientists(Grant No.22K13907)。
摘 要:In this paper,we study Miyaoka-type inequalities on Chern classes of terminal projective 3-folds with nef anti-canonical divisors.Let X be a terminal projective 3-fold such that-KX is nef.We show that if c_(1)(X)·c_(2)(X)≠0,then c_(1)(X)·c_(2)(X)≥1/252;if further X is not rationally connected,then c_(1)(X)·c_(2)(X)≥4/5 and this inequality is sharp.In order to prove this,we give a partial classification of such varieties along with many examples.We also study the nonvanishing of c_(1)(X)^(dim X-2)·c_(2)(X)for terminal weak Fano varieties and prove a Miyaoka-Kawamata-type inequality.
关 键 词:terminal threefolds Miyaoka-type inequality BOUNDEDNESS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145