改进轻量高效FMG-YOLOv8s的钢材表面缺陷检测算法  

Improved Lightweight and Efficient FMG-YOLOv8s Algorithm for Steel Surface Defect Detection

在线阅读下载全文

作  者:梁礼明 龙鹏威 李俞霖 LIANG Liming;LONG Pengwei;LI Yulin(School of Electrical Engineering andAutomation,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China)

机构地区:[1]江西理工大学电气工程与自动化学院,江西赣州341000

出  处:《计算机工程与应用》2025年第3期84-93,共10页Computer Engineering and Applications

基  金:国家自然科学基金(51365017,61463018);江西省自然科学基金(20192BAB205084);江西省教育厅科学技术研究项目(GJJ2200848)。

摘  要:针对当前钢材表面缺陷检测存在效率低和精度差等问题,以及现有缺陷检测模型结构复杂、参数量庞大、检测精度和实时性较差的挑战,基于YOLOv8s模型,提出一种轻量高效的钢材缺陷检测算法(FMG-YOLOv8s)。该方法采用轻量级的FasterNet网络作为骨干网络,降低模型复杂度并更好地处理多尺度特征信息,以提升检测性能;重构特征交互模块(M-C2f),有效保留空间和通道特征,抑制冗余信息,促进检测精度和速度的提升;设计GS-Detect模块作为整体模型的检测网络,降低模型复杂度,提升训练和推理速度。在Severstal钢材缺陷数据集进行实验验证,相较于YOLOv8s算法,FMG-YOLOv8算法的mAP提升3.3个百分点,参数量和计算量分别降低8.2×10^(6)和2.21×10^(10),检测速度达到250帧/s,召回率提升6.9个百分点。实验结果表明,该算法在检测精度、速度和轻量化方面取得更好的平衡,为边缘终端设备提供较高精度、轻量化和实时性的可靠参考。在NEU-DET缺陷数据集上进行泛化性验证,相较于原模型,mAP和检测速度分别提升3.1个百分点和185帧/s,结果显示该算法具备良好的鲁棒性。In response to the current challenges of low efficiency and poor accuracy in steel surface defect detection,as well as the complexity,large parameter size,and subpar detection accuracy and real-time performance of existing defect detection models,this paper proposes a lightweight and efficient steel defect detection algorithm(FMG-YOLOv8s)based on the YOLOv8s model.This method utilizes the lightweight FasterNet network as the backbone network to reduce model complexity and better handle multi-scale feature information for improved detection performance.The feature interaction module(M-C2f)is restructured to effectively preserve spatial and channel features,suppress redundant information,and enhance detection accuracy and speed.The GS-Detect module is designed as the detection network of the overall model to reduce model complexity and enhance training and inference speed.Experimental validation on the Severstal steel defect dataset shows that compared to the YOLOv8s algorithm,the FMG-YOLOv8 algorithm achieves a 3.3 percentage points improvement in mAP,while reducing parameter size and computational complexity by 8.2×10^(6) and 2.21×10^(10) respectively,and reaching a detection speed of 250 frames per second with a 6.9 percentage points improvement in recall rate.Experimental results demonstrate that this algorithm strikes a better balance in terms of detection accuracy,speed,and lightweight design,providing reliable references for high-precision,lightweight,and real-time performance on edge-terminal devices.Generalization validation on the NEU-DET defect dataset shows a 3.1 percentage points improvement in mAP and 185 frames per second improvement in detection speed compared to the original model,indicating good robustness of the algorithm.

关 键 词:缺陷检测 轻量化YOLOv8s FasterNet M-C2f GS-Detect 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象