基于稀疏贝叶斯推断的LDACS波束形成方法  

Beamforming method based on sparse Bayesian inference in LDACS

在线阅读下载全文

作  者:王磊[1] 高翔 胡潇潇 WANG Lei;GAO Xiang;HU Xiaoxiao(Key Laboratory of Civil Aviation Flight Wide Area Surveillance and Security Control Technology,Civil Aviation University of China,Tianjin 300300,China)

机构地区:[1]中国民航大学民航航班广域监视与安全管控技术重点实验室,天津300300

出  处:《系统工程与电子技术》2025年第1期332-339,共8页Systems Engineering and Electronics

基  金:国家自然科学基金重点项目(U2233216);中国民航大学民航航班广域监视与安全管控技术重点实验室开放基金(202101);中国交通教育研究会教育科学研究(JT2022YB138)资助课题。

摘  要:L波段数字航空通信系统(L-band digital aeronautical communication system,LDACS)作为未来航空数据链的重要技术手段之一,非常容易受到相邻波道的测距机系统信号的干扰。为此,提出一种基于稀疏贝叶斯推断的LDACS波束形成方法。首先,将LDACS地面站的粗略来向信息作为先验,并根据空域信号来向的稀疏性构建稀疏信号。随后,通过贝叶斯推断估算干扰和噪声的功率,估计各个信源的来向。最后,重构干扰噪声协方差矩阵,获得波束形成权矢量。该方法无需知晓干扰数量、干扰来向等信息。仿真结果表明,该方法在低信噪比和少快拍条件下也能稳定输出波束方向图,表现出较好性能。The L-band digital aeronautical communication system(LDACS),as one of the important technical means of the future aviation data link,is easy to be interfered by distance measuring equipment system signals of adjacent channels.Therefore,a beamforming method for LDACS based on sparse Bayesian inference is proposed.Firstly,the rough direction information of LDACS ground station is taken as a priori,and sparse signal is constructed according to the incoming sparsity of spatial signal.Then,Bayesian inference is used to estimate the power of interference and noise,and to estimate the coming of each signal source.Finally,the interference noise covariance matrix is reconstructed to obtain the beamforming weight vector.The method does not need to know the amount of interference and the direction of interference.Simulation results validate that the proposed method can also stabilize the output beam pattern and show good performance under the condition of low signal to noise ratio and few snapshots.

关 键 词:L波段数字航空通信系统 测距机 波束形成 稀疏贝叶斯推断 

分 类 号:TN911[电子电信—通信与信息系统] V243.1[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象