检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王俊斌 WANG Junbin(Hainan Vocational College of Politics and Law,Haikou,Hainan Province,571100 China)
出 处:《科技资讯》2025年第1期194-197,共4页Science & Technology Information
摘 要:随着城市化进程的加速,大型建筑如雨后春笋般涌现,对建筑的消防安全提出了更高的要求。在火灾等紧急情况下,如何迅速、安全地疏散人员,成为建筑设计中不可忽视的重要环节。近年来,随着智能算法的发展,利用算法进行建筑消防疏散路径规划已成为研究热点。研究提出一种基于自适应蚁群算法的建筑工程消防疏散路径规划方法。该方法通过综合考虑建筑内部的空间布局、火灾状况、人员疏散的影响因素,实现了高效、安全的疏散路径规划。通过与传统蚁群算法进行对比实验,验证了该方法在收敛速度和路径优化方面的优越性。With the acceleration of urbanization,large buildings have been emerging like mushrooms after rain,which puts higher requirements on the fire safety of buildings.In emergency situations such as fires,how to quickly and safely evacuate personnel has become an important aspect that cannot be ignored in architectural design.In recent years,with the development of intelligent algorithms,using algorithms for building fire evacuation path planning has become a research hotspot.This article proposes a fire evacuation path planning method for building engineering based on Adaptive Ant Colony algorithm.This method achieves efficient and safe evacuation path planning by comprehensively considering the spatial layout inside the building,fire conditions,and factors affecting personnel evacuation.Through comparative experiments with traditional ant colony algorithm,the superiority of this method in convergence speed and path optimization has been verified.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.90.123