检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任涛 吴晶 易亮 郑晓颖 REN Tao;WU Jing;YI Liang;ZHENG Xiao-ying(Department of Operational Research and Planning,Naval University of Engineering,Wuhan Hubei 430033,China)
机构地区:[1]海军工程大学作战运筹与规划系,湖北武汉430033
出 处:《计算机仿真》2024年第12期1-6,12,共7页Computer Simulation
摘 要:武器目标分配是依据作战目的、武器资源、目标威胁等级等约束条件,结合战场态势信息,以实现协同作战最佳效果为目的来实现武器目标分配的最佳方案,是作战指挥决策的关键环节,因此,如何利用高效的智能优化算法,能在尽可能短的计算时间内获得最优的分配方案,对于缩短指挥决策时间,提升指挥决策效能具有重要意义。在介绍了基本的武器分配模型的基础上,分析了当前主流智能优化算法的研究现状,并对算法的特点进行了对比研究,重点介绍了遗传算法和粒子群算法等。最后,对武器目标分配问题的研究方向进行了展望。Weapon target allocation is the optimal solution for weapon target allocation based on constraints such as combat objectives,weapon resources,and target threat levels,combined with battlefield situation information,with the aim of achieving the best collaborative combat effect.It is a key link in combat command decision-making.Therefore,how to use efficient intelligent optimization algorithm to obtain the best distribution plan in the shortest computing time as possible is of great significance for shortening the time of command and decision-making and improving the effectiveness of command and decision-making.Based on the introduction of the basic weapon distribution model,this paper introduces the current research status of mainstream intelligent optimization algorithms,and makes a comparative analysis of the characteristics of the algorithms,focusing on genetic algorithm and particle swarm optimization algorithm.Finally,the research direction of weapon target allocation problem is prospected.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222