Continuum estimation in low-resolution gamma-ray spectra based on deep learning  

在线阅读下载全文

作  者:Ri Zhao Li-Ye Liu Xin Liu Zhao-Xing Liu Run-Cheng Liang Ren-Jing Ling-Hu Jing Zhang Fa-Guo Chen 

机构地区:[1]China Institute for Radiation Protection,Taiyuan 030006,China [2]Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection,Taiyuan 030006,China

出  处:《Nuclear Science and Techniques》2025年第2期5-17,共13页核技术(英文)

基  金:supported by the National Natural Science Foundation of China(No.12005198).

摘  要:In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated spectrum is established,and a convolutional neural network consisting of 51 layers and more than 105 parameters is constructed to directly predict the entire continuum from the extracted global spectrum features.For testing,an in-house NaI-type whole-body counter is used,and 106 training spectrum samples(20%of which are reserved for testing)are generated using Monte Carlo simulations.In addition,the existing fitting,step-type,and peak erosion methods are selected for comparison.The proposed method exhibits excellent performance,as evidenced by its activity error distribution and the smallest mean activity error of 1.5%among the evaluated methods.Additionally,a validation experiment is performed using a whole-body counter to analyze a human physical phantom containing four radionuclides.The largest activity error of the proposed method is−5.1%,which is considerably smaller than those of the comparative methods,confirming the test results.The multiscale feature extraction and nonlinear relation modeling in the proposed method establish a novel approach for accurate and convenient continuum estimation in a low-resolution gamma-ray spectrum.Thus,the proposed method is promising for accurate quantitative radioactivity analysis in practical applications.

关 键 词:Gamma-ray spectrum Continuum estimation Deep learning Convolutional neural network End-to-end prediction 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] O571.323[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象