Human autonomy teaming-based safety-aware navigation through bio-inspired and graph-based algorithms  

在线阅读下载全文

作  者:Timothy Sellers Tingjun Lei Chaomin Luo Zhuming Bi Gene Eu Jan 

机构地区:[1]Department of Electrical and Computer Engineering,Mississippi State University,Starkville 39762,USA [2]Department of Civil and Mechanical Engineering,Purdue University Fort Wayne,Fort Wayne 46805,USA [3]Department of Computer Science,Asia University,Taichung 413305,Taiwan,China

出  处:《Biomimetic Intelligence & Robotics》2024年第4期76-91,共16页仿生智能与机器人(英文)

基  金:supported by the Mississippi Space Grant Consortium under NASA EPSCoR RID grant.

摘  要:In the field of autonomous robots,achieving complete precision is challenging,underscoring the need for human intervention,particularly in ensuring safety.Human Autonomy Teaming(HAT)is crucial for promoting safe and efficient human-robot collaboration in dynamic indoor environments.This paper introduces a framework designed to address these precision gaps,enhancing safety and robotic interactions within such settings.Central to our approach is a hybrid graph system that integrates the Generalized Voronoi Diagram(GVD)with spatio-temporal graphs,effectively combining human feedback,environmental factors,and key waypoints.An integral component of this system is the improved Node Selection Algorithm(iNSA),which utilizes the revised Grey Wolf Optimization(rGWO)for better adaptability and performance.Furthermore,an obstacle tracking model is employed to provide predictive data,enhancing the efficiency of the system.Human insights play a critical role,from supplying initial environmental data and determining key waypoints to intervening during unexpected challenges or dynamic environmental changes.Extensive simulation and comparison tests confirm the reliability and effectiveness of our proposed model,highlighting its unique advantages in the domain of HAT.This comprehensive approach ensures that the system remains robust and responsive to the complexities of real-world applications.

关 键 词:Human autonomy teaming(HAT) Robot path planning Generalized Voronoi diagram(GVD) Spatio-temporal graphs Bio-inspired algorithms 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象