An investigation of the private-attribute leakage in WiFi sensing  

在线阅读下载全文

作  者:Yiding Shi Xueying Zhang Lei Fu Huanle Zhang 

机构地区:[1]School of Computer Science and Technology,Shandong University,Qingdao 266237,China [2]School of Modern Finance,Jiaxing Nanhu University,Jiaxing 314099,China

出  处:《High-Confidence Computing》2024年第4期1-6,共6页高置信计算(英文)

基  金:supported by the National Natural Science Foundation of China(62302265,U23A20332);Shandong Provin-cial Natural Science Foundation,China(ZR2023QF172).

摘  要:WiFi sensing is critical to many applications,such as localization,human activity recognition,and contact-less health monitoring.With metaverse and ubiquitous sensing advances,WiFi sensing becomes increasingly imperative.However,as shown in this paper,WiFi sensing data leaks users’private attributes(e.g.,height,weight,and gender),violating increasingly stricter privacy protection laws and regulations.To demonstrate the leakage of private attributes in WiFi sensing,we investigate two public WiFi sensing datasets and apply a deep learning model to recognize users’private attributes.Our experimental results clearly show that our model can identify users’private attributes in WiFi sensing data collected by general WiFi applications,with almost 100%accuracy for gender inference,less than 4 cm error for height inference,and about 4 kg error for weight inference,respectively.Our finding calls for research efforts to preserve data privacy while enabling WiFi sensing-based applications.

关 键 词:WiFi sensing Private attribute Deep learning Privacy protection 

分 类 号:TN9[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象