Oversampling-Enhanced Feature Fusion-Based Hybrid ViT-1DCNN Model for Ransomware Cyber Attack Detection  

作  者:Muhammad Armghan Latif Zohaib Mushtaq Saifur Rahman Saad Arif Salim Nasar Faraj Mursal Muhammad Irfan Haris Aziz 

机构地区:[1]Department of Computer and Information System,Cleveland State University,Ohio,44115,USA [2]Department of Electrical,Electronics and Computer Systems,College of Engineering and Technology,University of Sargodha,Sargodha,40100,Pakistan [3]Electrical Engineering Department,College of Engineering,Najran University,Najran,61441,Saudi Arabia [4]Department of Mechanical Engineering,College of Engineering,King Faisal University,Al Ahsa,31982,Saudi Arabia [5]Department of Mechanical,Industrial and Energy System Engineering,University of Sargodha,Sargodha,40100,Pakistan

出  处:《Computer Modeling in Engineering & Sciences》2025年第2期1667-1695,共29页工程与科学中的计算机建模(英文)

摘  要:Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection mechanisms.This study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutional neural network(1DCNN)architectures to enhance ransomware detection capabilities.Addressing common challenges in ransomware detection,particularly dataset class imbalance,the synthetic minority oversampling technique(SMOTE)is employed to generate synthetic samples for minority class,thereby improving detection accuracy.The integration of ViT and 1DCNN through feature fusion enables the model to capture both global contextual and local sequential features,resulting in comprehensive ransomware classification.Tested on the UNSW-NB15 dataset,the proposed ViT-1DCNN model achieved 98%detection accuracy with precision,recall,and F1-score metrics surpassing conventional methods.This approach not only reduces false positives and negatives but also offers scalability and robustness for real-world cybersecurity applications.The results demonstrate the model’s potential as an effective tool for proactive ransomware detection,especially in environments where evolving threats require adaptable and high-accuracy solutions.

关 键 词:Ransomware attacks CYBERSECURITY vision transformer convolutional neural network feature fusion ENCRYPTION threat detection 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象