检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Muhammad Armghan Latif Zohaib Mushtaq Saifur Rahman Saad Arif Salim Nasar Faraj Mursal Muhammad Irfan Haris Aziz
机构地区:[1]Department of Computer and Information System,Cleveland State University,Ohio,44115,USA [2]Department of Electrical,Electronics and Computer Systems,College of Engineering and Technology,University of Sargodha,Sargodha,40100,Pakistan [3]Electrical Engineering Department,College of Engineering,Najran University,Najran,61441,Saudi Arabia [4]Department of Mechanical Engineering,College of Engineering,King Faisal University,Al Ahsa,31982,Saudi Arabia [5]Department of Mechanical,Industrial and Energy System Engineering,University of Sargodha,Sargodha,40100,Pakistan
出 处:《Computer Modeling in Engineering & Sciences》2025年第2期1667-1695,共29页工程与科学中的计算机建模(英文)
摘 要:Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection mechanisms.This study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutional neural network(1DCNN)architectures to enhance ransomware detection capabilities.Addressing common challenges in ransomware detection,particularly dataset class imbalance,the synthetic minority oversampling technique(SMOTE)is employed to generate synthetic samples for minority class,thereby improving detection accuracy.The integration of ViT and 1DCNN through feature fusion enables the model to capture both global contextual and local sequential features,resulting in comprehensive ransomware classification.Tested on the UNSW-NB15 dataset,the proposed ViT-1DCNN model achieved 98%detection accuracy with precision,recall,and F1-score metrics surpassing conventional methods.This approach not only reduces false positives and negatives but also offers scalability and robustness for real-world cybersecurity applications.The results demonstrate the model’s potential as an effective tool for proactive ransomware detection,especially in environments where evolving threats require adaptable and high-accuracy solutions.
关 键 词:Ransomware attacks CYBERSECURITY vision transformer convolutional neural network feature fusion ENCRYPTION threat detection
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.115.157