Low-entropy-penalty synthesis of giant macrocycles for good self-assembly and emission enhancement  

在线阅读下载全文

作  者:Xiao-Na Sun Ao Liu Kaidi Xu Zhe Zheng Kai Xu Ming Dong Bo Ding Jian Li Zhi-Yuan Zhang Chunju Li 

机构地区:[1]Academy of Interdisciplinary Studies on Intelligent Molecules,Tianjin Key Laboratory of Structure and Performance for Functional Molecules,College of Chemistry,Tianjin Normal University,Tianjin,P.R.China [2]College of Science,Center for Supramolecular Chemistry and Catalysis,Shanghai University,Shanghai,P.R.China [3]School of Chemistry and Chemical Engineering,Henan Normal University,Xinxiang,P.R.China

出  处:《Aggregate》2024年第6期163-172,共10页聚集体(英文)

基  金:National Natural Science Foundation of China,Grant/Award Numbers:21971192,22201211;Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University;Natural Science Foundation of Tianjin Municipality,Grant/Award Numbers:22JCQNJC00190,23JCZDJC00660。

摘  要:Macrocycles are key tools for molecular recognition and self-assembly.However,traditionally prevalent macrocyclic compounds exhibit specific cavities with diameters usually less than 1 nm,limiting their range of applications in supramolecular chemistry.The efficient synthesis of giant macrocycles remains a significant challenge because an increase in the monomer number results in cyclizationentropy loss.In this study,we developed a low-entropy-penalty synthesis strategy for producing giant macrocycles in high yields.In this process,long and rigid monomers possessing two reaction modules were condensed with paraformaldehyde via Friedel–Crafts reaction.A series of giant macrocycles with cavities of sizes ranging from 2.0 to 4.7 nm were successfully synthesized with cyclization yields of up to 72%.Experimental results and theoretical calculations revealed that extending the monomer length rather than increasing the monomer numbers could notably reduce the cyclization-entropy penalty and avoid configuration twists,thereby favoring the formation of giant macrocycles with large cavities.Significantly,the excellent self-assembly capacity of these giant macrocycles promoted their assembly into organogels.The xerogels exhibited enhanced photoluminescence quantum efficiencies of up to 83.1%.Mechanism investigation revealed the excellent assembly capacity originated from the abundantπ–πinteractions sites of the giant macrocycles.The outstanding emission enhancement resulted from the restricted nonradiative decay processes of rotation/vibration and improved radiative decay process of fluorescence.This study provides an effective and general method for achieving giant macrocycles,thereby expanding the supramolecular toolbox for host–guest chemistry and assembly applications.Moreover,the intriguing assembly and photophysical properties demonstrate the feasibility of developing novel and unique properties by expanding the macrocycle size.

关 键 词:entropy penalty giant macrocycles PHOTOLUMINESCENCE SELF-ASSEMBLY supramolecular chemistry 

分 类 号:O62[理学—有机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象