检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shuai Li Liuting Zhang Fuying Wu Yiqun Jiang Xuebin Yu
机构地区:[1]School of Energy and Power,Instrumental Analysis Center,Jiangsu University of Science and Technology,Zhenjiang 212003,China [2]Department of Materials Science,Fudan University,Shanghai 200433,China [3]Max Planck Institute for Iron Research,Düsseldorf 40237,Germany
出 处:《Chinese Chemical Letters》2025年第1期603-609,共7页中国化学快报(英文版)
基 金:financial supports from the National Key R&D Program of China(No.2020YFA0406204);the National Natural Science Foundation of China(No.51801078)。
摘 要:Hydrogen,as a cheap,clean,and cost-effective secondary energy source,performs an essential role in optimizing today’s energy structure.Magnesium hydride(Mg H_(2))represents an attractive hydrogen carrier for storage and transportation,however,the kinetic behavior and operating temperature remain undesirable.In this work,a dual-phase multi-site alloy(Ms A)anchored on carbon substrates was designed,and its superior catalytic effects on the hydrogen storage properties of MgH_(2) were reported.Mechanism analysis identified that multi-site Fe Ni_(3)/Ni Cu nanoalloys synergistically served as intrinsic drivers for the striking de/hydrogenation performance of the MgH_(2)-Ms A systems.Concretely,the unique multi-metallic site structure attached to the surface of MgH_(2)provided substantial reversible channels and accessible active sites conducive to the adsorption,activation,and nucleation of H atoms.In addition,the coupling system formed by FeNi_(3) and NiCu dual-phase alloys further enhanced the reactivity between Mg/MgH_(2) and H atoms.Hence,the onset dehydrogenation temperature of Mg H_(2)+5 wt%Ms A was reduced to 195℃ and the hydrogen desorption apparent activation energy was reduced to 83.6 k J/mol.5.08 wt%H_(2) could be released at 250℃ in 20 min,reaching a high dehydrogenation rate of 0.254 wt%H_(2)/min,yet that for MgH_(2) at a higher temperature of 335℃ was only 0.145 wt%H_(2)/min.Then,the dehydrogenated Mg H_(2)-Ms A sample could absorb hydrogen from room temperature(30℃)and charge 3.93 wt%H_(2) at 100℃ within20 min under 3.0 MPa H_(2) pressure.Benefiting from carbon substrates,the 5 wt%Ms A doped-MgH_(2) could still maintain 6.36 wt%hydrogen capacity after 20 cycles.In conclusion,this work provides experimental rationale and new insights for the design of efficient catalysts for magnesium-based solid-state hydrogen storage materials.
关 键 词:Hydrogen storage Magnesium hydride Synergistic effect CATALYSIS Multi-site alloys
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3