检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁剑英 邹明佳 赵杰[1] 黄扬春 于耀光 崔国峰[3] YUAN Jian-ying;ZOU Ming-jia;ZHAO Jie;HUANG Yang-chun;YU Yao-guang;CUI Guo-feng(School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,China;School of Materials,Sun Yat-sen University,Shenzhen 518107,China;School of Chemistry,Sun Yat-sen University,Guangzhou 510275,China)
机构地区:[1]华南理工大学机械与汽车工程学院,广东广州510640 [2]中山大学材料学院,广东深圳518107 [3]中山大学化学学院,广东广州510275
出 处:《分析测试学报》2025年第2期369-377,共9页Journal of Instrumental Analysis
基 金:国家自然科学基金(51571093,51271205)。
摘 要:研制了一种高功率密度紧凑型的锂电池电流型电化学阻抗谱(GEIS)分析仪,其具有集成度高、精度高、输出激励大和测试频率范围广等优点,满足不同锂电池GEIS测试的需求。在完成仪器整体方案设计后,对硬件系统模块展开深入测试,以确保系统可靠性和准确性。通过对实际18650型锂电池进行GEIS测试,并将结果与专业仪器Gamry Reference 600+进行比较,结果显示本仪器测试阻抗模值的相对误差和相位绝对误差分别不超过2%和3°。为验证所提出的电池荷电状态(SOC)估计算法,使用该仪器对实际电池样本进行测试,共获得60组不同SOC下锂电池的阻抗谱数据。将阻抗谱数据作为高斯过程回归(GPR)的输入,可以实现对锂电池SOC的估计,平均绝对误差在3.9%以内。该文研发的锂电池GEIS分析仪,有望集成于电池管理系统,为更多基于阻抗谱的锂电池状态估计算法提供实时的数据来源,以实现锂电池更高水平的运行状态监测。In this paper,a high-power-density compact galvanostatic electrochemical impedance spectroscopy(GEIS)measuring instrument for lithium batteries is developed.It offers the advantages of high integration,high accuracy,large output excitation and wide range of test frequency to meet the requirements of different lithium battery GEIS tests.After the overall schematic design of the in⁃strument is completed,the hardware system modules are thoroughly tested to ensure the reliability and accuracy of the system.Through the GEIS test on the actual 18650 lithium batteries and compar⁃ing the results with the professional instrument Gamry Reference 600+,both sets of results indicate that the relative impedance modulus error and the absolute phase error of this instrument are no more than 2%and 3°,respectively.In order to validate the battery state of charge(SOC)estimation algo⁃rithm proposed in this paper,the instrument was used to test actual battery samples,resulting in a total of 60 sets of impedance spectral data from lithium batteries at various SOCs.Using the imped⁃ance spectrum data as the input for Gaussian process regression(GPR),the estimation of SOC of lith⁃ium batteries can be achieved with an average absolute error of 3.9%.The lithium battery GEIS meter developed in this paper is expected to be integrated into the battery management system,thereby fur⁃nishing a real-time data source for impedance spectrum-based lithium battery state estimation algo⁃rithms.This integration is intended to facilitate a more comprehensive monitoring of the operational state of lithium batteries.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.125.111