基于CatBoost的低轨互联网通信系统瞬时故障检测方法  

Transient Fault Detection for Low-orbit Internet Communication System Based on CatBoost

在线阅读下载全文

作  者:谢泽涛 庄毅[1] XIE Zetao;ZHUANG Yi(College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)

机构地区:[1]南京航空航天大学计算机科学与技术学院,江苏南京211106

出  处:《计算机与现代化》2025年第1期59-66,112,共9页Computer and Modernization

基  金:国家自然科学基金资助项目(61572253)。

摘  要:低轨互联网通信系统在现代通信领域具有重要意义,但由于其高度复杂的特性,系统瞬时故障的检测一直是一个具有挑战的问题。本文通过对低轨互联网通信系统可能发生的瞬时故障进行故障源分析,建立低轨互联网通信系统的瞬时故障模型,提出一种基于CatBoost的低轨互联网通信系统瞬时故障检测方法,具有高效准确的特点。首先对编译后的中间代码进行故障注入,通过控制流图和传播路径分析进行相关指令特征提取;其次,使用CatBoost机器学习算法训练故障预测模型;最后根据模型的预测结果对指令进行部分冗余加固处理以实现自主故障检测。对比实验结果表明,本文提出的基于CatBoost的瞬时故障预测模型具有更高的检测率和更低的时空开销。Low-orbit Internet communication systems are of great significance in the field of modern communications,but due to their highly complex characteristics,the detection of transient system faults has always been a challenging problem.This paper analyzes the fault sources of possible transient faults in the low-orbit Internet communication system,establishes a transient fault model of the low-orbit Internet communication system,and proposes a CatBoost-based transient fault detection method for the low-orbit Internet communication system with the features of efficiency and accuracy.Firstly,fault is injected into the compiled intermediate code,and relevant instruction features are extracted through control flow graph and propagation path analysis;Secondly,the CatBoost machine learning algorithm is used to train the fault prediction model;Finally,the instructions are reinforced with partial redundancy according to the prediction results of the model to realize autonomous fault detection.Comparative experimental results show that the instantaneous fault prediction model based on CatBoost proposed in this article has a higher detection rate and lower space-time overhead.

关 键 词:瞬时故障 故障注入 故障检测 CatBoost 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象