TiFe基储氢合金活化及电化学性能研究进展  

Research Progress on Activation and Electrochemistry Property of TiFe Based Hydrogen Storage Alloys

在线阅读下载全文

作  者:孙丽丽[1,2] 关宁 王勇 李永存[1,2] SUN Lili;GUAN Ning;WANG Yong;LI Yongcun(School of Mechanical Science and Engineering,Northest Petroleum University,Daqing 163318,Heilongjiang,China;Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention,Daqing 163318,Heilongjiang,China)

机构地区:[1]东北石油大学机械科学与工程学院,黑龙江大庆163318 [2]黑龙江省石油石化多相介质处理及污染防治重点实验室,黑龙江大庆163318

出  处:《材料导报》2025年第4期109-117,共9页Materials Reports

基  金:黑龙江省自然科学基金(LH2023E016)。

摘  要:能源危机正在催生新能源迅猛发展,氢是地球上分布广泛的元素之一,因具有高热值、丰富的来源以及环保特性而被认为是理想的次生能源。随着新能源汽车行业的快速发展,燃料电池技术,特别是镍-氢(Ni-MH)燃料电池,已成为研究的热点。在各种储氢材料中,TiFe基合金因其低成本和高储氢容量等特点备受青睐,也作为Ni-MH燃料电池的负极材料成为现代研究的焦点。TiFe基合金属于AB型储氢合金的典型代表,具有潜在的高理论储氢容量,而且在室温下表现出良好的可逆吸放氢性能。然而,TiFe基合金的应用面临一些挑战。首先,合金的激活过程要求极端条件,这增加了制备的复杂性。其次,合金在吸放氢过程中容易受到毒化作用的影响,这可能降低其性能。最后,合金的吸放氢动力学性质的波动也可能对其在电化学应用中的性能产生不利影响。这些问题限制了TiFe基合金在商业化应用中的进一步发展。单元素合金化或多元素合金化可以有效改变TiFe基合金的成分布局和晶格结构,优化储氢性能,包括提高活化动力学、增加储氢容量以及优化吸放氢动力学,还可以显著提高合金的电化学综合性能,包括最大充放电容量、高倍率放电性能及循环稳定性等。制备工艺中的铸造法和球磨法等同样可以增加合金的储氢活性,显著提高其吸放氢动力学性能,进而提升电化学充放电容量。表面改性的方法优化了合金的微观结构和接触位点,从而提高了储氢性能和循环寿命,使合金的电化学充放电过程更稳定。The energy crisis is giving rise to the rapid development of new energy.Hydrogen is one of the widely distributed elements on earth,and is considered an ideal secondary energy source due to its high calorific value,abundant sources,and environmental characteristics.With the rapid growth of the new energy vehicle industry,fuel cell technology,especially nickel hydrogen(Ni-MH)fuel cells,has become a hot research.Among various hydrogen storage materials,TiFe based alloys are highly favored due to their low cost and high hydrogen storage capacity,and have become a focus of modern research as negative electrode materials for nickel hydrogen fuel cells.TiFe based alloys are a typical representative of AB type hydrogen storage alloys,with potential high theoretical hydrogen storage capacity,and exhibit good reversible hydrogen absorption and desorption performance at room temperature.However,the application of TiFe based alloys faces some challenges.Firstly,the activation process of alloys requires extreme conditions,which increases the complexity of preparation.Secondly,alloys are susceptible to poisoning during hydrogen absorption and desorption,which may reduce their performance.Finally,fluctuations in the hydrogen absorption and desorption kinetics of alloys may also have adverse effects on their performance in electrochemical applications.These issues limit the further development of TiFe based alloys in commercial applications.Single element alloying or multi-element alloying can effectively change the composition layout and lattice structure of TiFe based alloys,optimize hydrogen storage performance,including improving activation kinetics,increasing hydrogen storage capacity,and optimizing hydrogen absorption and desorption kinetics.It can also significantly improve the electrochemical comprehensive performance of the alloy,including maximum discharge capacity,high rate discharge,and cycle stability.The casting method and ball milling method used in the preparation process can also increase the hydrogen storage a

关 键 词:储氢合金 TiFe基合金 活化性能 电化学性能 

分 类 号:TG174[金属学及工艺—金属表面处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象