基于人工智能的高校图书馆信息检索系统优化研究  

Research on Optimization of UniversityLibrary Information Retrieval System Based on Artificial Intelligence

在线阅读下载全文

作  者:冯阳飏 FENG Yangyang(Henan Procuratorial Vocational College,Zhengzhou 451191,China)

机构地区:[1]河南检察职业学院,郑州451191

出  处:《移动信息》2025年第1期228-230,共3页Mobile Information

摘  要:文中旨在探讨基于人工智能技术的高校图书馆信息检索系统。随着信息技术的飞速发展,特别是人工智能技术的广泛应用,高校图书馆的信息检索服务面临着新的机遇与挑战。首先,分析了当前高校图书馆信息检索系统的现状与存在的问题,随后深入研究了人工智能技术在图书馆信息检索中的应用,包括自然语言处理、机器学习、数据挖掘等关键技术。在此基础上,设计了一个基于人工智能的图书馆信息检索系统优化方案,包括系统架构设计、功能模块设计以及算法与模型的优化。通过实现与测试,验证了该优化方案能显著提升信息检索的准确性和效率,改善用户体验。最后,总结了研究成果,分析了研究中的不足,并对未来人工智能技术在高校图书馆信息检索领域的应用进行了展望。This paper aims to explore the optimization of university library information retrieval system based on artificial intelligence technology.With the rapid development of information technology,especially the wide application of artificial intelligence technology,the information retrieval service of university library is facing new opportunities and challenges.This paper firstly analyzes the current status and existing problems of the information retrieval system of university library,and then deeply studies the application of artificial intelligence technology in library information retrieval,including natural language processing,machine learning,data mining and other key technologies.On this basis,this paper designs an optimization scheme of library information retrieval system based on artificial intelligence,including system architecture design,function module design,algorithm and model optimization.Through implementation and testing,it is verified that the optimization scheme can significantly improve the accuracy and efficiency of information retrieval,and improve user experience.Finally,this paper summarizes the research results,analyzes the limitations and shortcomings of the research,and looks forward to the future application of artificial intelligence technology in the field of university library information retrieval.

关 键 词:人工智能 高校图书馆 信息检索系统 优化设计 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象